Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56989Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉進賢(Chein-Shan Liu) | |
| dc.contributor.author | Hung-Cheng Wang | en |
| dc.contributor.author | 王宏程 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:32:29Z | - |
| dc.date.available | 2014-08-12 | |
| dc.date.copyright | 2014-08-12 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-05 | |
| dc.identifier.citation | [1] Liu C.-S., Cone of non-linear dynamical system and group preserving schemes. International Journal of Non-linear Mechanics, 36(7): pp. 1047-1068 (2001).
[2] Iserles A., Munthe-Kaas HZ., Norsett SP., Zanna A., Lie-group methods. Acta Numerica, 9: pp. 215-365 (2000). [3] Hairer E., Lubich C., Wanner C., Geometric Numerical Integration: Structure- Preserving Algorithms for Ordinary Differential Equations. 31, Springer (2002). [4] Iserles A., Solving linear ordinary differential equations by exponentials of iterated commutators. Numerische Mathematik, 45: pp. 183-199 (1984). [5] Iserles A, Norsett SP., On the solution of linear dfferential equations in Lie group. Philosophical Transcations-royal society of London series a mathematical physical and engineering science, 357: pp. 983-1019 (1999). [6] Munthe-Kaas HZ., Runge-Kutta methods on Lie group. BIT Numerical Mathematics, 38: pp. 92-111 (1998). [7] Munthe-Kaas HZ., High order Runge-Kutta methods on manifolds. Applied Numerical Mathematics, 29: pp. 115-127 (1999). [8] Zhang S., Deng Z., A simple and effcient fourth-order approximation solution for nonlinear dynamic system. Mechanics Research Communications, 31: pp. 221-28 (2004). [9] Zhang S., Deng Z., Group preserving schemes for nonlinear dynamic system based on RKMK methods. Applied Mathematics and Computation, 175: pp. 497-507 (2006). [10] Lee H.C., Liu C.-S., The fourth-order group preserving methods for the integrations of ordinary differential equations. Computer Modeling in Engineering and Sciences, 41: pp. 1-26 (2009). [11] Liu C.-S., A Jordan algebra and dynamic system with associator as vector field. International Journal of Non-linear Mechanics, 35: pp. 421-429 (2000). [12] Loh C.H., Lee Z.K., Wu T.C., Peng S.Y., Ground motion characteristics of the Chi-Chi earthquake of 21 September 1999. Earthquake Engineering and Structural Dynamics, 29: pp. 867-897 (2000). [13] Sokolov VY., Loh CH., Wen KL., Comparison of the Taiwan Chi-Chi earthquake strong-motion data and ground-motion assessment based on spectral model from smaller earthquakes in Taiwan. Bulletin of the Seismological Society of America, 92: pp. 1855-1877 (2002). [14] Sokolov VY., Loh C.H., Wen K.L., Evaluation of hard rock spectral models for the Taiwan region on the basis of the 1999 Chi-Chi earthquake data. Soil Dynamics and Earthquake Engineering, 23: pp. 715-735 (2003). [15] Chopra AK., Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice-Hall, New Jersey, 2012. [16] Kanai K., Semi-empirical formula for the seismic characteristics of the ground. Bulletin of the Earthquake Research Institute, University of Tokyo, 5: pp. 309-325 (1957). [17] Tajimi H., A statistical method of determining the maximum responses of a building structure during an earthquake. Proceeding of the 2ndWorld Conference on Earthquake Engineering, Japan, pp. 781-797 (1960). [18] Iordanescu R., Dynamical systems and Jordan structures. International Journal Of Pure And Applied Mathematics, 35: pp. 125-143 (2007). [19] Bertram, Wolfgang, Neeb KH., Projective completions of Jordan pairs: Part I. The generalized projective geometry of a Lie algebra. Journal of Algebra, 277(2): pp. 474-519 (2004). [20] Cvitanovic P., Group Theory: Birdtracks, Lie's, and Exceptional Groups. Princeton University Press. (2008) [21] Gallier JH., Geometric methods and applications: For computer science and engineering. Springer. (2001). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56989 | - |
| dc.description.abstract | 工程問題多能以常微分方程式的形式描述,而以數值分析的形式求取常微分方程式的近似解也發展了一段時間。保群算法為基於群論所發展而來的方法,在方程式的求解過程中皆保有勞倫茲群的架構,具有良好的穩定性以及準確度。本文中主要引入了喬登結構的概念,改良原本保群算法的增廣動態系統,衍生出更加準確的第二類保群算法,並以其他方法像是保群算法、四階Runge-Kutta法予之比較。而第二類保群算法在求解的過程中能提供反映系統解特性的訊號條碼,於是將此方法應用於地震下單自由度的動力系統,並且將訊號做分類以便於詳細分析訊號的切換和物理意義,進一步的建立起訊號條碼與結構反應的關係,就可以藉由掃瞄條碼來獲取我們想要的資訊。在本文中除了介紹有關於第二類保群算法的基本理論外,將以MATLAB撰寫程式建構出第二類保群算法及其訊號,在不同的地震下予以模擬分析,並且歸納其應用,以及未來研究方向。 | zh_TW |
| dc.description.abstract | Most of engineering problems can be formulated in the form of ordinary differential equations (ODEs). Nowadays, people usually use numerical analysis to find an approximate solution when the exact solution of ODEs is hard to derive. The group preserving scheme (GPS) developed by Liu is a numerical method based on group theorem. It is a stable and accurate method for solving ODE because in every step of GPS, it can retain the group structure in a Lorentz group form. The present thesis mainly introduces the concept of Jordan structure to modify the original augmented dynamic system of GPS, hence a more accurate numerical method, named the second type of GPS (GPS2) comes up, and in the example there will show the comparison between GPS2 and other methods, like the GPS and the famous RK4 method. Moreover, it is interesting that we can find signal barcodes reflected to the characteristics of the system, and the barcodes are generated by signum function through the process of using GPS2 to solve ODEs. Consequently, by applying the GPS2 to solve SDOF motion equation under earthquakes and classifying the sign in order to realize both physical meaning and the switch of the sign in detail can construct a bridge between the signal barcode and the structural response, as a result, we can abstract the information by scanning barcodes. In this thesis, we will not only describe the basic theory of GPS2 but also write a program to simulate the response of SDOF system and its signal barcode under different earthquakes by MATLAB. After that, there are some conclusions and future works at last. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:32:29Z (GMT). No. of bitstreams: 1 ntu-103-R01521244-1.pdf: 12085178 bytes, checksum: d9089fa52a3e5961bdf471d62eb7e947 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 2 1.4 論文架構 3 第二章 保群算法 5 2.1 群 5 2.2 李群 6 2.3 光錐構造 8 2.4 李代數 11 2.5 增廣動態系統 12 2.6 凱萊轉換(Cayley Transform) 16 2.7 指數映射(Exponential Mapping) 20 2.8 喬登動態系統 24 2.9 數值積分方法 25 2.9.1 尤拉法 25 2.9.2 Runge-Kutta法 25 第三章 第二類保群算法與其訊號 27 3.1 喬登架構增廣動態系統 27 3.2 第二類保群算法(GPS2) 29 3.3 第二類保群算法求解流程圖 49 3.4 訊號的關聯性 50 3.4.1 符號函數 50 3.4.2 Sign=+1 50 3.4.3 Sign=-1 52 3.4.4 臨界能量指標 53 3.4.5 Sign=0 53 3.4.6 sign( ) 54 3.5 訊號的不連通性 56 3.5.1 第一類不連通性 1st set of dis-connectivity 57 3.5.2 第二類不連通性 2nd set of dis-connectivity 58 3.5.3 第三類不連通性 3rd set of dis-connectivity 59 3.5.4 第四類不連通性 4nd set of dis-connectivity 60 3.6 訊號的切換 63 3.6.1 交叉跳躍(Cross jump) 64 3.6.2 共同跳躍(Co- jump) 66 3.6.3 第一類不連通性↔第三類不連通性 68 3.6.4 第三類不連通性↔第四類不連通性 69 3.6.5 第四類不連通性↔第二類不連通性 70 3.6.6 第一類不連通性↔第二類不連通性 71 第四章 數值算例 73 4.1 方程式平移轉換 73 4.2 數值算例一 73 4.3 數值算例二 75 4.4 數值算例三 76 4.5 數值算例四 77 4.6 算例圖 79 第五章 結論與未來工作 98 參考文獻 101 | |
| dc.language.iso | zh-TW | |
| dc.subject | 李群 | zh_TW |
| dc.subject | 李代數 | zh_TW |
| dc.subject | 保群算法 | zh_TW |
| dc.subject | 喬登結構 | zh_TW |
| dc.subject | 第二類保群算法 | zh_TW |
| dc.subject | 符號函數 | zh_TW |
| dc.subject | 單自由度運動方程式 | zh_TW |
| dc.subject | signum function | en |
| dc.subject | Lie-group | en |
| dc.subject | Lie-algebra | en |
| dc.subject | group preserving schemes(GPS) | en |
| dc.subject | SDOF motion equations. | en |
| dc.subject | the second augmented Lie-symmetry SOo(n | en |
| dc.subject | Jordan structure | en |
| dc.title | 以第二類保群算法研究地震行為下結構反應訊號 | zh_TW |
| dc.title | By using the second GPS method to study structure response signal under earthquakes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張建仁(Jian-Ren Chang),陳永為(Yung-Wei Chen) | |
| dc.subject.keyword | 李群,李代數,保群算法,喬登結構,第二類保群算法,符號函數,單自由度運動方程式, | zh_TW |
| dc.subject.keyword | Lie-group,Lie-algebra,group preserving schemes(GPS),the second augmented Lie-symmetry SOo(n,1),Jordan structure,signum function,SDOF motion equations., | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 11.8 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
