請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56970
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊雅倩(Ya-Chien Yang) | |
dc.contributor.author | Ya-Lin Li | en |
dc.contributor.author | 李雅玲 | zh_TW |
dc.date.accessioned | 2021-06-16T06:32:07Z | - |
dc.date.available | 2024-08-05 | |
dc.date.copyright | 2014-10-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-06 | |
dc.identifier.citation | 1 Kitisin, K., and Mishra, L.: ‘Molecular biology of colorectal cancer: new targets’, Semin Oncol, 2006, 33, (6 Suppl 11), pp. S14-23
2 Boland, C.R., and Goel, A.: ‘Microsatellite instability in colorectal cancer’, Gastroenterology, 2010, 138, (6), pp. 2073-2087.e2073 3 Walther, A., Johnstone, E., Swanton, C., Midgley, R., Tomlinson, I., and Kerr, D.: ‘Genetic prognostic and predictive markers in colorectal cancer’, Nature reviews. Cancer, 2009, 9, (7), pp. 489-499 4 Soreide, K., Janssen, E.A., Soiland, H., Korner, H., and Baak, J.P.: ‘Microsatellite instability in colorectal cancer’, Br J Surg, 2006, 93, (4), pp. 395-406 5 Le Beau, M.M., Drabkin, H., Glover, T.W., Gemmill, R., Rassool, F.V., McKeithan, T.W., et al.: ‘An FHIT tumor suppressor gene?’, Genes Chromosomes Cancer, 1998, 21, (4), pp. 281-289 6 Fodde, R., and Smits, R.: ‘Cancer biology. A matter of dosage’, Science, 2002, 298, (5594), pp. 761-763 7 Payne, S.R., and Kemp, C.J.: ‘Tumor suppressor genetics’, Carcinogenesis, 2005, 26, (12), pp. 2031-2045 8 Kinzler, K.W., and Vogelstein, B.: ‘Cancer-susceptibility genes. Gatekeepers and caretakers’, Nature, 1997, 386, (6627), pp. 761, 763 9 Vogelstein, B., and Kinzler, K.W.: ‘Cancer genes and the pathways they control’, Nat Med, 2004, 10, (8), pp. 789-799 10 Yeh, S.H., Chen, P.J., Lai, M.Y., and Chen, D.S.: ‘Allelic loss on chromosomes 4q and 16q in hepatocellular carcinoma: association with elevated alpha-fetoprotein production’, Gastroenterology, 1996, 110, (1), pp. 184-192 11 Chou, Y.H., Chung, K.C., Jeng, L.B., Chen, T.C., and Liaw, Y.F.: ‘Frequent allelic loss on chromosomes 4q and 16q associated with human hepatocellular carcinoma in Taiwan’, Cancer Lett, 1998, 123, (1), pp. 1-6 12 Nagai, H., Pineau, P., Tiollais, P., Buendia, M.A., and Dejean, A.: ‘Comprehensive allelotyping of human hepatocellular carcinoma’, Oncogene, 1997, 14, (24), pp. 2927-2933 13 Shah, S.I., Yip, L., Greenberg, B., Califano, J.A., Chow, J., Eisenberger, C.F., et al.: ‘Two distinct regions of loss on chromosome arm 4q in primary head and neck squamous cell carcinoma’, Arch Otolaryngol Head Neck Surg, 2000, 126, (9), pp. 1073-1076 14 Shivapurkar, N., Sood, S., Wistuba, II, Virmani, A.K., Maitra, A., Milchgrub, S., et al.: ‘Multiple regions of chromosome 4 demonstrating allelic losses in breast carcinomas’, Cancer research, 1999, 59, (15), pp. 3576-3580 15 Shivapurkar, N., Maitra, A., Milchgrub, S., and Gazdar, A.F.: ‘Deletions of chromosome 4 occur early during the pathogenesis of colorectal carcinoma’, Hum Pathol, 2001, 32, (2), pp. 169-177 16 n, L.K.: ‘Glucosaminyl N-deacetylase/N-sulphotransferases in heparan sulphate biosynthesis and biology’, Biochemical Society Transactions, 2003, 31 17 Ledin, J., Staatz, W., Li, J.P., Gotte, M., Selleck, S., Kjellen, L., et al.: ‘Heparan sulfate structure in mice with genetically modified heparan sulfate production’, The Journal of biological chemistry, 2004, 279, (41), pp. 42732-42741 18 Bishop, J.R., Schuksz, M., and Esko, J.D.: ‘Heparan sulphate proteoglycans fine-tune mammalian physiology’, Nature, 2007, 446, (7139), pp. 1030-1037 19 Sarrazin, S., Lamanna, W.C., and Esko, J.D.: ‘Heparan sulfate proteoglycans’, Cold Spring Harb Perspect Biol, 2011, 3, (7) 20 Erik Forsberg, G.P., Maria Ringvall, Carolina Lunderius, Bianca Tomasini-Johansson, Marion Kusche-Gullberg§, Inger Eriksson, Johan Ledin, Lars Hellman & Lena KjelleA n: ‘Abnormal mast cells in mice defcient in a heparin-synthesizing enzyme’, Nature, 1999, 400 21 Donald E. Humphries, G.W., Daniel S. Friend, Michael F. Gurish, Wen-Tao Qiu, Chifu Huang, Arlene H. Sharpe & Richard L. Stevens: ‘Heparin is essential for the storage of species granule proteases in mast cells’, Nature, 1999, 400 22 Guoping Fana, L.X., Lu Chengb, Xinhui Wangc, Bo Sund, Gengxi Hub: ‘Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice’, FEBS Letters, 2000, 467, pp. 7-11 23 Ringvall, M., Ledin, J., Holmborn, K., van Kuppevelt, T., Ellin, F., Eriksson, I., et al.: ‘Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1’, The Journal of biological chemistry, 2000, 275, (34), pp. 25926-25930 24 Pan, Y., Woodbury, A., Esko, J.D., Grobe, K., and Zhang, X.: ‘Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development’, Development, 2006, 133, (24), pp. 4933-4944 25 Pan, Y., Carbe, C., Powers, A., Zhang, E.E., Esko, J.D., Grobe, K., et al.: ‘Bud specific N-sulfation of heparan sulfate regulates Shp2-dependent FGF signaling during lacrimal gland induction’, Development, 2008, 135, (2), pp. 301-310 26 Hu, Z., Yu, M., and Hu, G.: ‘NDST-1 modulates BMPR and PTHrP signaling during endochondral bone formation in a gene knockout model’, Bone, 2007, 40, (6), pp. 1462-1474 27 Pallerla, S.R., Lawrence, R., Lewejohann, L., Pan, Y., Fischer, T., Schlomann, U., et al.: ‘Altered heparan sulfate structure in mice with deleted NDST3 gene function’, The Journal of biological chemistry, 2008, 283, (24), pp. 16885-16894 28 Esko, J.D., and Selleck, S.B.: ‘Order out of chaos: assembly of ligand binding sites in heparan sulfate’, Annual review of biochemistry, 2002, 71, pp. 435-471 29 Mythreye, K., and Blobe, G.C.: ‘Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion’, Cellular signalling, 2009, 21, (11), pp. 1548-1558 30 Kirkbride, K.C., Ray, B.N., and Blobe, G.C.: ‘Cell-surface co-receptors: emerging roles in signaling and human disease’, Trends in biochemical sciences, 2005, 30, (11), pp. 611-621 31 Matsuda, K., Maruyama, H., Guo, F., Kleeff, J., Itakura, J., Matsumoto, Y., et al.: ‘Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells’, Cancer research, 2001, 61, (14), pp. 5562-5569 32 Iozzo, R.V., and Sanderson, R.D.: ‘Proteoglycans in cancer biology, tumour microenvironment and angiogenesis’, Journal of cellular and molecular medicine, 2011, 15, (5), pp. 1013-1031 33 Khotskaya, Y.B., Dai, Y., Ritchie, J.P., MacLeod, V., Yang, Y., Zinn, K., et al.: ‘Syndecan-1 is required for robust growth, vascularization, and metastasis of myeloma tumors in vivo’, The Journal of biological chemistry, 2009, 284, (38), pp. 26085-26095 34 Aikawa, T., Whipple, C.A., Lopez, M.E., Gunn, J., Young, A., Lander, A.D., et al.: ‘Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells’, The Journal of clinical investigation, 2008, 118, (1), pp. 89-99 35 Williamson, D., Selfe, J., Gordon, T., Lu, Y.J., Pritchard-Jones, K., Murai, K., et al.: ‘Role for amplification and expression of glypican-5 in rhabdomyosarcoma’, Cancer research, 2007, 67, (1), pp. 57-65 36 Park, H., Kim, Y., Lim, Y., Han, I., and Oh, E.S.: ‘Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells’, The Journal of biological chemistry, 2002, 277, (33), pp. 29730-29736 37 Sun, M., Gomes, S., Chen, P., Frankenberger, C.A., Sankarasharma, D., Chung, C.H., et al.: ‘RKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2’, Oncogene, 2013 38 Oh, T., Kim, N., Moon, Y., Kim, M.S., Hoehn, B.D., Park, C.H., et al.: ‘Genome-wide identification and validation of a novel methylation biomarker, SDC2, for blood-based detection of colorectal cancer’, The Journal of molecular diagnostics : JMD, 2013, 15, (4), pp. 498-507 39 Cheng, W., Tseng, C.J., Lin, T.T., Cheng, I., Pan, H.W., Hsu, H.C., et al.: ‘Glypican-3-mediated oncogenesis involves the Insulin-like growth factor-signaling pathway’, Carcinogenesis, 2008, 29, (7), pp. 1319-1326 40 Zittermann, S.I., Capurro, M.I., Shi, W., and Filmus, J.: ‘Soluble glypican 3 inhibits the growth of hepatocellular carcinoma in vitro and in vivo’, International journal of cancer. Journal international du cancer, 2010, 126, (6), pp. 1291-1301 41 Sharma, B., Handler, M., Eichstetter, I., Whitelock, J.M., Nugent, M.A., and Iozzo, R.V.: ‘Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo’, The Journal of clinical investigation, 1998, 102, (8), pp. 1599-1608 42 Goyal, A., Pal, N., Concannon, M., Paul, M., Doran, M., Poluzzi, C., et al.: ‘Endorepellin, the angiostatic module of perlecan, interacts with both the alpha2beta1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2): a dual receptor antagonism’, The Journal of biological chemistry, 2011, 286, (29), pp. 25947-25962 43 Seppinen, L., and Pihlajaniemi, T.: ‘The multiple functions of collagen XVIII in development and disease’, Matrix biology : journal of the International Society for Matrix Biology, 2011, 30, (2), pp. 83-92 44 Bagri, A., Tessier-Lavigne, M., and Watts, R.J.: ‘Neuropilins in tumor biology’, Clinical cancer research : an official journal of the American Association for Cancer Research, 2009, 15, (6), pp. 1860-1864 45 Williams, K., Motiani, K., Giridhar, P.V., and Kasper, S.: ‘CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches’, Experimental biology and medicine (Maywood, N.J.), 2013, 238, (3), pp. 324-338 46 Bendas, G., and Borsig, L.: ‘Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins’, International journal of cell biology, 2012, 2012, pp. 676731 47 Bailey, K.R., Rustay, N.R., and Crawley, J.N.: ‘Behavioral phenotyping of transgenic and knockout mice: practical concerns and potential pitfalls’, Ilar j, 2006, 47, (2), pp. 124-131 48 Barbaric, I., Miller, G., and Dear, T.N.: ‘Appearances can be deceiving: phenotypes of knockout mice’, Brief Funct Genomic Proteomic, 2007, 6, (2), pp. 91-103 49 Brown, S.D., and Moore, M.W.: ‘The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping’, Mammalian genome : official journal of the International Mammalian Genome Society, 2012, 23, (9-10), pp. 632-640 50 Zorn, A.M., and Wells, J.M.: ‘Vertebrate endoderm development and organ formation’, Annual review of cell and developmental biology, 2009, 25, pp. 221-251 51 Bitgood, M.J., and McMahon, A.P.: ‘Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo’, Developmental biology, 1995, 172, (1), pp. 126-138 52 Haramis, A.P., Begthel, H., van den Born, M., van Es, J., Jonkheer, S., Offerhaus, G.J., et al.: ‘De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine’, Science, 2004, 303, (5664), pp. 1684-1686 53 Batts, L.E., Polk, D.B., Dubois, R.N., and Kulessa, H.: ‘Bmp signaling is required for intestinal growth and morphogenesis’, Dev Dyn, 2006, 235, (6), pp. 1563-1570 54 van den Brink, G.R.: ‘Hedgehog signaling in development and homeostasis of the gastrointestinal tract’, Physiological reviews, 2007, 87, (4), pp. 1343-1375 55 Karlsson, L., Lindahl, P., Heath, J.K., and Betsholtz, C.: ‘Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis’, Development (Cambridge, England), 2000, 127, (16), pp. 3457-3466 56 Kim, B.M., Mao, J., Taketo, M.M., and Shivdasani, R.A.: ‘Phases of canonical Wnt signaling during the development of mouse intestinal epithelium’, Gastroenterology, 2007, 133, (2), pp. 529-538 57 He, X.C., Zhang, J., Tong, W.G., Tawfik, O., Ross, J., Scoville, D.H., et al.: ‘BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling’, Nature genetics, 2004, 36, (10), pp. 1117-1121 58 DAVID H. SCOVILLE, T.S., XI C. HE, and LINHENG LI: ‘REVIEWS IN BASIC AND CLINICAL GASTROENTEROLOGY’, Gastroenterology, 2008, 134, pp. 849–864 59 Noah, T.K., Donahue, B., and Shroyer, N.F.: ‘Intestinal development and differentiation’, Experimental cell research, 2011, 317, (19), pp. 2702-2710 60 Mach, J., Hshieh, T., Hsieh, D., Grubbs, N., and Chervonsky, A.: ‘Development of intestinal M cells’, Immunological reviews, 2005, 206, pp. 177-189 61 Gerbe, F.o., Legraverend, C., and Jay, P.: ‘ The intestinal epithelium tuft cells: specification and function’, Cell. Mol. Life Sci., 2012, 69, pp. 2907–2917 62 van der Flier, L.G., and Clevers, H.: ‘Stem cells, self-renewal, and differentiation in the intestinal epithelium’, Annual review of physiology, 2009, 71, pp. 241-260 63 Medema, J.P., and Vermeulen, L.: ‘Microenvironmental regulation of stem cells in intestinal homeostasis and cancer’, Nature, 2011, 474, (7351), pp. 318-326 64 Bettess, M.D., Dubois, N., Murphy, M.J., Dubey, C., Roger, C., Robine, S., et al.: ‘c-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epithelium’, Molecular and cellular biology, 2005, 25, (17), pp. 7868-7878 65 Pinto, D., Gregorieff, A., Begthel, H., and Clevers, H.: ‘Canonical Wnt signals are essential for homeostasis of the intestinal epithelium’, Genes & development, 2003, 17, (14), pp. 1709-1713 66 Kuhnert, F., Davis, C.R., Wang, H.T., Chu, P., Lee, M., Yuan, J., et al.: ‘Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1’, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, (1), pp. 266-271 67 Fevr, T., Robine, S., Louvard, D., and Huelsken, J.: ‘Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells’, Molecular and cellular biology, 2007, 27, (21), pp. 7551-7559 68 Zecchini, V., Domaschenz, R., Winton, D., and Jones, P.: ‘Notch signaling regulates the differentiation of post-mitotic intestinal epithelial cells’, Genes & development, 2005, 19, (14), pp. 1686-1691 69 Guruharsha, K.G., Kankel, M.W., and Artavanis-Tsakonas, S.: ‘The Notch signalling system: recent insights into the complexity of a conserved pathway’, Nature reviews. Genetics, 2012, 13, (9), pp. 654-666 70 Penton, A.L., Leonard, L.D., and Spinner, N.B.: ‘Notch signaling in human development and disease’, Seminars in cell & developmental biology, 2012, 23, (4), pp. 450-457 71 Noah, T.K., and Shroyer, N.F.: ‘Notch in the intestine: regulation of homeostasis and pathogenesis’, Annual review of physiology, 2013, 75, pp. 263-288 72 Milano, J., McKay, J., Dagenais, C., Foster-Brown, L., Pognan, F., Gadient, R., et al.: ‘Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation’, Toxicol Sci, 2004, 82, (1), pp. 341-358 73 van Es, J.H., van Gijn, M.E., Riccio, O., van den Born, M., Vooijs, M., Begthel, H., et al.: ‘Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells’, Nature, 2005, 435, (7044), pp. 959-963 74 Droy-Dupre, L., Vallee, M., Bossard, C., Laboisse, C.L., and Jarry, A.: ‘A multiparametric approach to monitor the effects of gamma-secretase inhibition along the whole intestinal tract’, Disease models & mechanisms, 2012, 5, (1), pp. 107-114 75 Jensen, J., Pedersen, E.E., Galante, P., Hald, J., Heller, R.S., Ishibashi, M., et al.: ‘Control of endodermal endocrine development by Hes-1’, Nature genetics, 2000, 24, (1), pp. 36-44 76 Stanger, B.Z., Datar, R., Murtaugh, L.C., and Melton, D.A.: ‘Direct regulation of intestinal fate by Notch’, Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, (35), pp. 12443-12448 77 Pellegrinet, L., Rodilla, V., Liu, Z., Chen, S., Koch, U., Espinosa, L., et al.: ‘Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells’, Gastroenterology, 2011, 140, (4), pp. 1230-1240.e1231-1237 78 Riccio, O., van Gijn, M.E., Bezdek, A.C., Pellegrinet, L., van Es, J.H., Zimber-Strobl, U., et al.: ‘Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2’, EMBO reports, 2008, 9, (4), pp. 377-383 79 van Es, J.H., de Geest, N., van de Born, M., Clevers, H., and Hassan, B.A.: ‘Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors’, Nature communications, 2010, 1, pp. 18 80 Kazanjian, A., Noah, T., Brown, D., Burkart, J., and Shroyer, N.F.: ‘Atonal homolog 1 is required for growth and differentiation effects of notch/gamma-secretase inhibitors on normal and cancerous intestinal epithelial cells’, Gastroenterology, 2010, 139, (3), pp. 918-928, 928.e911-916 81 Kim, T.H., and Shivdasani, R.A.: ‘Genetic evidence that intestinal Notch functions vary regionally and operate through a common mechanism of Math1 repression’, The Journal of biological chemistry, 2011, 286, (13), pp. 11427-11433 82 Gunther, C., Neumann, H., Neurath, M.F., and Becker, C.: ‘Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium’, Gut, 2013, 62, (7), pp. 1062-1071 83 Simons, B.D., and Clevers, H.: ‘Stem cell self-renewal in intestinal crypt’, Experimental cell research, 2011, 317, (19), pp. 2719-2724 84 Reynolds, A., Wharton, N., Parris, A., Mitchell, E., Sobolewski, A., Kam, C., et al.: ‘Canonical Wnt signals combined with suppressed TGFbeta/BMP pathways promote renewal of the native human colonic epithelium’, Gut, 2013 85 Hattrup, C.L., and Gendler, S.J.: ‘Structure and function of the cell surface (tethered) mucins’, Annual review of physiology, 2008, 70, pp. 431-457 86 Lang, T., Hansson, G.C., and Samuelsson, T.: ‘Gel-forming mucins appeared early in metazoan evolution’, Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, (41), pp. 16209-16214 87 Johansson, M.E., Ambort, D., Pelaseyed, T., Schutte, A., Gustafsson, J.K., Ermund, A., et al.: ‘Composition and functional role of the mucus layers in the intestine’, Cell Mol Life Sci, 2011, 68, (22), pp. 3635-3641 88 Bennett, E.P., Mandel, U., Clausen, H., Gerken, T.A., Fritz, T.A., and Tabak, L.A.: ‘Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family’, Glycobiology, 2012, 22, (6), pp. 736-756 89 Kim, Y.S., and Ho, S.B.: ‘Intestinal goblet cells and mucins in health and disease: recent insights and progress’, Current gastroenterology reports, 2010, 12, (5), pp. 319-330 90 Hollingsworth, M.A., and Swanson, B.J.: ‘Mucins in cancer: protection and control of the cell surface’, Nature reviews. Cancer, 2004, 4, (1), pp. 45-60 91 Linden, S.K., Sheng, Y.H., Every, A.L., Miles, K.M., Skoog, E.C., Florin, T.H., et al.: ‘MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy’, PLoS pathogens, 2009, 5, (10), pp. e1000617 92 Yamamoto, M., Bharti, A., Li, Y., and Kufe, D.: ‘Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion’, The Journal of biological chemistry, 1997, 272, (19), pp. 12492-12494 93 Gendler, S.J.: ‘MUC1, the renaissance molecule’, Journal of mammary gland biology and neoplasia, 2001, 6, (3), pp. 339-353 94 Wen, Y., Caffrey, T.C., Wheelock, M.J., Johnson, K.R., and Hollingsworth, M.A.: ‘Nuclear association of the cytoplasmic tail of MUC1 and beta-catenin’, The Journal of biological chemistry, 2003, 278, (39), pp. 38029-38039 95 Schroeder, J.A., Masri, A.A., Adriance, M.C., Tessier, J.C., Kotlarczyk, K.L., Thompson, M.C., et al.: ‘MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation’, Oncogene, 2004, 23, (34), pp. 5739-5747 96 Bergstrom, K.S., Guttman, J.A., Rumi, M., Ma, C., Bouzari, S., Khan, M.A., et al.: ‘Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen’, Infection and immunity, 2008, 76, (2), pp. 796-811 97 Round, A.N., Rigby, N.M., Garcia de la Torre, A., Macierzanka, A., Mills, E.N., and Mackie, A.R.: ‘Lamellar structures of MUC2-rich mucin: a potential role in governing the barrier and lubricating functions of intestinal mucus’, Biomacromolecules, 2012, 13, (10), pp. 3253-3261 98 Johansson, M.E.: ‘Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins’, PloS one, 2012, 7, (7), pp. e41009 99 Johansson, M.E., Phillipson, M., Petersson, J., Velcich, A., Holm, L., and Hansson, G.C.: ‘The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria’, Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, (39), pp. 15064-15069 100 O'Sullivan, B.P., and Freedman, S.D.: ‘Cystic fibrosis’, Lancet, 2009, 373, (9678), pp. 1891-1904 101 McKay, D.M., Halton, D.W., McCaigue, M.D., Johnston, C.F., Fairweather, I., and Shaw, C.: ‘Hymenolepis diminuta: intestinal goblet cell response to infection in male C57 mice’, Experimental parasitology, 1990, 71, (1), pp. 9-20 102 Moore, M.E., Boren, T., and Solnick, J.V.: ‘Life at the margins: modulation of attachment proteins in Helicobacter pylori’, Gut microbes, 2011, 2, (1), pp. 42-46 103 Grootjans, J., Hundscheid, I.H., Lenaerts, K., Boonen, B., Renes, I.B., Verheyen, F.K., et al.: ‘Ischaemia-induced mucus barrier loss and bacterial penetration are rapidly counteracted by increased goblet cell secretory activity in human and rat colon’, Gut, 2013, 62, (2), pp. 250-258 104 Ordas, I., Eckmann, L., Talamini, M., Baumgart, D.C., and Sandborn, W.J.: ‘Ulcerative colitis’, The Lancet, 2012, 380, (9853), pp. 1606-1619 105 Johansson, M.E., Gustafsson, J.K., Holmen-Larsson, J., Jabbar, K.S., Xia, L., Xu, H., et al.: ‘Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis’, Gut, 2014, 63, (2), pp. 281-291 106 Kreuger, J., and Kjellen, L.: ‘Heparan sulfate biosynthesis: regulation and variability’, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 2012, 60, (12), pp. 898-907 107 Crawford, B.E., Garner, O.B., Bishop, J.R., Zhang, D.Y., Bush, K.T., Nigam, S.K., et al.: ‘Loss of the heparan sulfate sulfotransferase, Ndst1, in mammary epithelial cells selectively blocks lobuloalveolar development in mice’, PloS one, 2010, 5, (5), pp. e10691 108 Habuchi, H., and Kimata, K.: ‘Mice deficient in heparan sulfate 6-O-sulfotransferase-1’, Progress in molecular biology and translational science, 2010, 93, pp. 79-111 109 Li, J.P.: ‘Glucuronyl C5-epimerase an enzyme converting glucuronic acid to iduronic acid in heparan sulfate/heparin biosynthesis’, Progress in molecular biology and translational science, 2010, 93, pp. 59-78 110 Ringvall, M., and Kjellen, L.: ‘Mice Deficient in Heparan Sulfate N-Deacetylase/N-Sulfotransferase 1’, 2010, 93, pp. 35-58 111 Qu, X., Carbe, C., Tao, C., Powers, A., Lawrence, R., van Kuppevelt, T.H., et al.: ‘Lacrimal gland development and Fgf10-Fgfr2b signaling are controlled by 2-O- and 6-O-sulfated heparan sulfate’, The Journal of biological chemistry, 2011, 286, (16), pp. 14435-14444 112 Reizes, O., Lincecum, J., Wang, Z., Goldberger, O., Huang, L., Kaksonen, M., et al.: ‘Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3’, Cell, 2001, 106, (1), pp. 105-116 113 Strader, A.D., Reizes, O., Woods, S.C., Benoit, S.C., and Seeley, R.J.: ‘Mice lacking the syndecan-3 gene are resistant to diet-induced obesity’, The Journal of clinical investigation, 2004, 114, (9), pp. 1354-1360 114 Zcharia, E., Metzger, S., Chajek-Shaul, T., Aingorn, H., Elkin, M., Friedmann, Y., et al.: ‘Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior’, Faseb j, 2004, 18, (2), pp. 252-263 115 Mahley, R.W., and Ji, Z.S.: ‘Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E’, J Lipid Res, 1999, 40, (1), pp. 1-16 116 MacArthur, J.M., Bishop, J.R., Stanford, K.I., Wang, L., Bensadoun, A., Witztum, J.L., et al.: ‘Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members’, The Journal of clinical investigation, 2007, 117, (1), pp. 153-164 117 Kim: ‘MUC2 gene promoter methylation in mucinous and non-mucinous colorectal cancer tissues’, International journal of oncology, 2010, 36, (4) 118 Johansson, M.E., Larsson, J.M., and Hansson, G.C.: ‘The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions’, Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 Suppl 1, pp. 4659-4665 119 Jenny K. Gustafsson, 2 Anna Ermund,1 Malin E. V. Johansson,1 Andre Schutte,1 Gunnar C. Hansson,2, and Sjovall3, a.H.: ‘An ex vivo method for studying mucus formation, properties, and thickness in human colonic biopsies and mouse small and large intestinal explants’, Am J Physiol Gastrointest Liver Physiol, 2012, 302, pp. G430–G438 120 Guilmeau, S., Flandez, M., Bancroft, L., Sellers, R.S., Tear, B., Stanley, P., et al.: ‘Intestinal deletion of Pofut1 in the mouse inactivates notch signaling and causes enterocolitis’, Gastroenterology, 2008, 135, (3), pp. 849-860, 860 e841-846 121 Sartor, R.B.: ‘Microbial influences in inflammatory bowel diseases’, Gastroenterology, 2008, 134, (2), pp. 577-594 122 Fukata, M., and Abreu, M.T.: ‘Pathogen recognition receptors, cancer and inflammation in the gut’, Current opinion in pharmacology, 2009, 9, (6), pp. 680-687 123 Dharmani, P., Srivastava, V., Kissoon-Singh, V., and Chadee, K.: ‘Role of intestinal mucins in innate host defense mechanisms against pathogens’, Journal of innate immunity, 2009, 1, (2), pp. 123-135 124 Tanaka, H., Deng, G., Matsuzaki, K., Kakar, S., Kim, G.E., Miura, S., et al.: ‘BRAF mutation, CpG island methylator phenotype and microsatellite instability occur more frequently and concordantly in mucinous than non-mucinous colorectal cancer’, International journal of cancer. Journal international du cancer, 2006, 118, (11), pp. 2765-2771 125 Park, E.T., Oh, H.K., Gum, J.R., Jr., Crawley, S.C., Kakar, S., Engel, J., et al.: ‘HATH1 expression in mucinous cancers of the colorectum and related lesions’, Clinical cancer research : an official journal of the American Association for Cancer Research, 2006, 12, (18), pp. 5403-5410 126 Okudaira, K., Kakar, S., Cun, L., Choi, E., Wu Decamillis, R., Miura, S., et al.: ‘MUC2 gene promoter methylation in mucinous and non-mucinous colorectal cancer tissues’, International journal of oncology, 2010, 36, (4), pp. 765-775 127 Sternberg, L.R., Byrd, J.C., Yunker, C.K., Dudas, S., Hoon, V.K., and Bresalier, R.S.: ‘Liver colonization by human colon cancer cells is reduced by antisense inhibition of MUC2 mucin synthesis’, Gastroenterology, 1999, 116, (2), pp. 363-371 128 Borenshtein, D., Schlieper, K.A., Rickman, B.H., Chapman, J.M., Schweinfest, C.W., Fox, J.G., et al.: ‘Decreased expression of colonic Slc26a3 and carbonic anhydrase iv as a cause of fatal infectious diarrhea in mice’, Infection and immunity, 2009, 77, (9), pp. 3639-3650 129 Yamanishi, H., Murakami, H., Ikeda, Y., Abe, M., Kumagi, T., Hiasa, Y., et al.: ‘Regulatory dendritic cells pulsed with carbonic anhydrase I protect mice from colitis induced by CD4+CD25- T cells’, Journal of immunology, 2012, 188, (5), pp. 2164-2172 130 Barker, N., van Oudenaarden, A., and Clevers, H.: ‘Identifying the stem cell of the intestinal crypt: strategies and pitfalls’, Cell stem cell, 2012, 11, (4), pp. 452-460 131 Akiyama, J., Okamoto, R., Iwasaki, M., Zheng, X., Yui, S., Tsuchiya, K., et al.: ‘Delta-like 1 expression promotes goblet cell differentiation in Notch-inactivated human colonic epithelial cells’, Biochemical and biophysical research communications, 2010, 393, (4), pp. 662-667 132 Miyamoto, S., and Rosenberg, D.W.: ‘Role of Notch signaling in colon homeostasis and carcinogenesis’, Cancer science, 2011, 102, (11), pp. 1938-1942 133 Sakane, H., Yamamoto, H., Matsumoto, S., Sato, A., and Kikuchi, A.: ‘Localization of glypican-4 in different membrane microdomains is involved in the regulation of Wnt signaling’, Journal of cell science, 2012, 125, (Pt 2), pp. 449-460 134 Cadwalader, E.L., Condic, M.L., and Yost, H.J.: ‘2-O-sulfotransferase regulates Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly’, Development, 2012, 139, (7), pp. 1296-1305 135 Dani, N., Nahm, M., Lee, S., and Broadie, K.: ‘A targeted glycan-related gene screen reveals heparan sulfate proteoglycan sulfation regulates WNT and BMP trans-synaptic signaling’, PLoS genetics, 2012, 8, (11), pp. e1003031 136 Yamamoto, S., Nakase, H., Matsuura, M., Honzawa, Y., Matsumura, K., Uza, N., et al.: ‘Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/beta-catenin signaling’, Am J Physiol Gastrointest Liver Physiol, 2013, 305, (3), pp. G241-249 137 Astudillo, P., Carrasco, H., and Larrain, J.: ‘Syndecan-4 inhibits Wnt/beta-catenin signaling through regulation of low-density-lipoprotein receptor-related protein (LRP6) and R-spondin 3’, The international journal of biochemistry & cell biology, 2014, 46, pp. 103-112 138 Vereecke, L., Beyaert, R., and van Loo, G.: ‘Enterocyte death and intestinal barrier maintenance in homeostasis and disease’, Trends in molecular medicine, 2011, 17, (10), pp. 584-593 139 Yang, J., Su, Y., Zhou, Y., and Besner, G.E.: ‘Heparin-binding EGF-like growth factor (HB-EGF) therapy for intestinal injury: Application and future prospects’, Pathophysiology, 2014, 21, (1), pp. 95-104 140 Aikawa, J., Grobe, K., Tsujimoto, M., and Esko, J.D.: ‘Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4’, The Journal of biological chemistry, 2001, 276, (8), pp. 5876-5882 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56970 | - |
dc.description.abstract | 大腸直腸癌主要是由於上皮細胞不正常增值,並累積基因變異,包含致癌基因過度活化與抑癌基因失去功能。先前本實驗室利用微衛星標記,於人類第四號染色體4q26區域篩選出N-deacetylase/N-sulfotransferase (NDST4)為大腸直腸癌相關之抑癌基因。NDST4參與Heparan sulfate proteoglycans (HSPGs)合成過程,主要的功能為去乙醯化作用(N-deacetylation)和硫酸化作用(N-sulfation),HSPGs在發育、生長、腫瘤發生、炎症反應、微生物侵襲等不同生理和病理機制皆扮演重要角色。為了探究NDST4的功能,本實驗室已製造Ndst4基因剔除小鼠,本論文即進行表現型分析。首先,我們觀察到Ndst4基因剔除並不影響其發育與繁衍。接著利用Modified-SHIRPA v1.、全血球計數、血清生化檢驗與組織學檢查進行研究。在外觀和行為分析上,野生型與Ndst4基因剔除小鼠並無顯著差異;而統計全血球計數,發現於Ndst4基因剔除母鼠,其嗜酸性白血球數目和其百分比顯著高於野生型小鼠;在血清生化檢驗結果顯示: Ndst4基因剔除公鼠之高密度脂蛋白顯著低於野生型小鼠。此外,於組織學檢查,以H&E染色觀察大腸組織並計量大腸隱窩(crypt)長度,並無顯著差異,但發現Ndst4基因剔除小鼠之大腸杯狀細胞有增加的現象,進一步以Alcian blue and Periodic Acid Schiff Staining分析,證實Ndst4基因剔除小鼠之近端與中段大腸,杯狀細胞數量皆顯著高於野生型小鼠。接著以Carbonic anhydrase I 免疫組織化學染色法檢測大腸吸收細胞,結果顯示:Ndst4基因剔除小鼠之近端與中段大腸的大腸吸收細胞皆顯著下降。進一步分析大腸道上皮之腸幹細胞與前驅細胞數量,以細胞增生標記ki-67和 5-bromo-2-deoxyuridine進行標定,則無顯著差異。此外,Ndst4基因剔除小鼠之近端與中段大腸隱窩頂端的凋亡小體顯著增加,此現象並以活化態caspase 3染色進行確認。然而,檢查其它組織和器官之形態,並未發現顯著變異。此外,我們發現Ndst4基因剔除小鼠之近端大腸Muc2基因mRNA表現量顯著增高,此結果與組織學檢查之杯狀細胞增加一致。最後,我們也檢測大腸之Ndst家族其他成員表現量,發現Ndst4基因剔除並未使Ndst1-Ndst3基因表現量顯著變化,推測Ndst4於大腸之HSPG生合成過程具有其特定功能,並在大腸道分化與生理功能扮演重要的角色。 | zh_TW |
dc.description.abstract | Colorectal cancer (CRC) originates from abnormal proliferation of epithelial cells and accumulation of many genetic aberration, including activation of oncogenes and inactivation of tumor suppressor genes. Our previous study seaked for CRC-associated tumor suppressor genes on chromosome 4 by loss of heterozygosity study. A putative tumor suppressor gene, namely N-deacetylase/N-sulfotransferase 4 (NDST4) was found at chromosome 4q26. NDST4 participates in biosynthesis of Heparan sulfate proteoglycans (HSPGs), resulting in N-acetylglucosamine (GlcNAc) N-deacetylation and N-sulfation. HSPGs play many important roles in development, growth, tumorigenesis, inflammation and microbial invasion. To study the physiological function of NDST4, we had produced a Ndst4 knockout (Ndst4-/-) mouse strain and aimed to phenotypic characterization in the study. First, the Ndst4-/- mice were fertile and developed normally. To compare the phenotypes between Ndst4-/- and WT mice, we conducted the modified-SHIRPA v1., complete blood count, biochemistry and histological analysis. There was no significant difference in modified-SHIRPA v1. analysis. Nevertheless, the number and percentage of eosinophils were significantly increased in Ndst4-/- female mice, and the concentration of high-density lipoprotein was significantly decreased in Ndst4-/- male mice when compared with their gender-matched wild type (WT) littermates. As for histological examination, the goblet cell density is significantly higher in the proximal and middle colon of Ndst4-/- mice. Consistantly, the colonocyte density was significantly lower in the proximal and middle colon of Ndst4-/- mice. However, there was no difference in length of crypt and intestinal progenitor cell with ki-67 and 5-bromo-2-deoxyuridine staining. Moreover, Ndst4 deficiency increased the basal level of apoptosis in the colonic mucosa. Whereae, there was no obvious aberration found in other organs and tissues by histological examination. Using real-time RT-PCR analyses, Muc2 expression was increased in the proximal colon of Ndst4-/- mice compared with WT mice. The result is compatible with the histological finding of increased goblet cell. On the other hand, the gene expression levels of Ndst1-Ndst3 were not significantly different between WT and Ndst4-/- mice. Taken together, the results in the study indicate that Ndst4 deficiency may influence HS chain modification of specific HSPGs that play a pivotal role in colonic epithelial differentiation and function. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:32:07Z (GMT). No. of bitstreams: 1 ntu-103-R01424012-1.pdf: 10523846 bytes, checksum: 61ea448dcd312a318845ca5c35400945 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iv 縮寫對照表 vi 圖目錄 xii 表目錄 xiv 一. 緒論 1 1. 研究背景 1 1.1大腸直腸癌 1 1.2抑癌基因 2 2. 相關文獻回顧 2 2.1第四號染色體基因刪除 2 2.2 NDST (N-deacetylase/N-sulfotransferase)家族與NDST4 3 2.3 HSPG與癌症 4 2.4表現型分析 6 2.5大腸分化 7 2.6 腸道黏液系統 9 3 實驗室先前研究結果 11 3.1第四號染色體之失異合性檢測 11 3.2 Ndst4基因剔除小鼠 12 二. 研究目標 13 三. 材料方法 14 1. 實驗小鼠 14 2. Ndst4基因剔除小鼠表現型分析 14 2.1 Modified-SHIRPA v1.檢測 14 2.2血液檢測 14 2.3生化檢測 15 3. 5-bromo-2-deoxyuridine(BrdU)標記實驗 15 4. 組織處理及染色 15 4.1 組織處理 15 4.2 蘇木紫-伊紅染色(Hemotoxylin and Eosin stain) 16 4.3 阿爾斯藍-過碘酸希夫氏染色(Alcian blue and Periodic Acid Schiff Staining) 16 4.4 免疫組織化學染色(Immunohistochemistry stain) 17 5. RNA表現量分析 17 5.1 採取小鼠周邊血液之白血球 17 5.2 RNA萃取 18 5.3 反轉錄合成cDNA 18 5.4 定量反轉錄聚合酶連鎖反應 19 6. 統計分析 20 7. 試劑和抗體 20 四. 實驗結果 21 1. Ndst4基因剔除小鼠發育和生育能力 21 2. Ndst4基因剔除小鼠表現型分析 21 2.1 Modified-SHIRPA v1.檢測分析 22 2.2 血液學檢測分析 22 2.3 生化學檢測分析 22 3. 組織學檢測分析 23 3.1 缺乏Ndst4,其近端大腸與中段大腸之杯狀細胞顯著多於野生型 小鼠,而遠端大腸無顯著差異 23 3.2 缺乏Ndst4,其近端大腸與中段大腸之腸吸收細胞顯著少於野生 型小鼠,而遠端大腸無顯著差異 24 3.3 缺乏Ndst4,不影響腸道隱窩下層的腸幹細胞與前趨細胞數量 24 3.4 缺乏Ndst4,其近端大腸與中段大腸之凋亡小體顯著高於野生型 小鼠,而遠端大腸則無顯著差異 25 3.5 缺乏Ndst4不影響大腸上皮之Syndecan1的表現量 26 3.6 缺乏Ndst4,其大腸以外之組織與器官的形態學分析並無顯著差 異 26 4. 基因表現分析 28 4.1 缺乏Ndst4,其近端大腸之Muc2表現量顯著高於野生型小鼠, 而遠端大腸則無顯著差異 28 4.2 缺乏Ndst4,其近端大腸與遠端大腸之Hes1、Dll1、Klf4表現 量皆無顯著差異 29 4.3 分析Ndst4於不同器官與組織之表現量 29 4.4 Ndst4缺失並不影響其他Ndst家族成員之基因表現量 30 4.5 Ndst4表現量隨著近端大腸到遠端大腸有所不同,符合組織學檢 查之結果 30 4.6 Ndst1至Ndst4在不同組織或器官其表現量不一,符合過去文獻 研究之報告 31 五. 討論 32 六. 圖 39 七. 表 72 八. 參考文獻 81 九. 附錄 93 | |
dc.language.iso | zh-TW | |
dc.title | Ndst4基因剔除小鼠之表現型分析 | zh_TW |
dc.title | Phenotypic analysis of Ndst4 knockout mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林淑華(Shu-Wha Lin),蘇剛毅(Kang-Yi Su),林素珍(Sue-Jane Lin) | |
dc.subject.keyword | 大腸直腸癌,NDST4,基因剔除小鼠,表現型分析, | zh_TW |
dc.subject.keyword | Colorectal cancer,NDST4,Gene knockout mouse,Phenotyping, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-06 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 10.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。