Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56965
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立義(Lee-Yih Wang)
dc.contributor.authorYan-Hao Linen
dc.contributor.author林彥豪zh_TW
dc.date.accessioned2021-06-16T06:32:02Z-
dc.date.available2016-08-11
dc.date.copyright2014-08-11
dc.date.issued2014
dc.date.submitted2014-08-06
dc.identifier.citation[1] H. Kallmans, M. Pope, J. Chem. Phys. 1958, 30, 585.
[2] C. W. Tang, Appl. Phy. Lett. 1986, 48, 183.
[3] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 1992, 258, 1474.
[4] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, Science, 1995, 270, 1789.
[5] Y. Lin, Y. F. Li, X. W. Zhan, Chem. Soc. Rev., 2012, 41, 4245.
[6] P. L. T. Boudreault, A. Najari, M. Leclerc, Chem. Mater., 2010, 23, 456.
[7] G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C. J. Brabec, Adv. Mater., 2008, 28, 579.
[8] L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Nature photonics, 2012, 6, 180.
[9] G. Li, R. Zhu, Y. Yang, Nature photonics, 2012, 6, 153.
[10] Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868.
[11] H. Zhou, L. Yang, W. You, Macromolecules, 2012, 45, 607.
[12] R. D. McCullough, S. Tristram-Nagle, S. P. Williams, R. D. Lowe, M. Jayaraman, J. Am. Chem. Soc., 1993, 115, 4910.
[13] J. Roncali, Chem. Rev., 1997, 97, 173.
[14] (a) G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater., 2005, 4, 864. (b) W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater., 2005, 15, 1617.
[15] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater., 2010, 22, 135.
[16] L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, J. Hou, Angew. Chem., Int. Ed., 2011, 50, 9697.
[17] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nature photonics, 2012, 6, 591.
[18] H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You, Angew. Chem., Int. Ed., 2011, 50, 2995.
[19] T.-Y. Chu, J. Lu, S. Beaupré, Y. Zhang, J. R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, Y. J. Tao, Am. Chem. Soc., 2011, 133, 4250.
[20] C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So, J. R. Reynolds, J. Am. Chem. Soc., 2011, 133, 10062.
[21] C. Y. Chang, Y. J. Cheng, S. H. Hung, J. S. Wu, W. S. Kao, C. H. Lee, C. S. Hsu, Adv. Mater., 2012, 24, 549.
[22] M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen, J. M. Kroon, O. Inganäs, M. R. Andersson, Adv.Mater., 2003, 15, 988.
[23] Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, Y. Cao, Appl. Phys. Lett., 2004, 84, 1653.
[24] L. H. Slooff, S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen, M. M. Koetse, Appl. Phys. Lett., 2007, 90, 143506.
[25] M. H. Chen, J. Hou, Z. Hong, G. Yang, S. Sista, L. M. Chen, Y. Yang, Adv.Mater., 2009, 21, 4238.
[26] Y. J. Cheng, S. W. Cheng, C. Y. Chang, W. S. Kao, M. H. Liao, C. S. Hsu, Chem. Commun., 2012, 48, 3203.
[27] K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, A. B. Holmes, Sol. Energy. Mater.Sol. Cells, 2000, 61, 63.
[28] L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend, J. D. MacKenzie, Science, 2001, 293, 1119.
[29] L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, R. H. Friend, J. D. MacKenzie, Physica E, 2002, 14, 263.
[30] A. M. Van de Craats, J. M. Warman, Adv. Mater., 2001, 13, 130.
[31] J. Roncali, P. Frere, P. Blanchard, R. De Bettignies, M. Turbiez, S. Roquet, P. Leriche, Y. Nicolas, Thin Sol. Films, 2006, 511, 567.
[32] S. Karpe, A. Cravino, P. Fr_ere, M. Allain, G. Mabon, J. Roncali, Adv. Funct. Mater., 2007, 17, 1163
[33] S. Roquet, R. Bettignies, P. Leriche, A. Cravino, J. J. Roncali, Mater.Chem., 2006, 16, 3040.
[34] G. Zhao, G. Wu, C. He, F. Q. Bai, H. Xi, H. X. Zhang, Y. Li, J. Phys, Chem. C, 2009, 113, 2636.
[35] S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, J. J. Roncali, Am. Chem. Soc., 2006, 128, 3459.
[36] A. Cravino, P. Leriche, O. Aleveque, S. Roquet, J. Roncali, Adv.Mater.,.2006, 18, 3033.
[37] P. Leriche, P. Fr_ere, A. Cravino, O. Alev^eque, J. J. Roncali, Org. Chem., 2007, 72, 8332.
[38] A. Cravino, P. Leriche, O. Aleveque, S. Roquet, J. Roncali, Adv. Mater., 2006, 18, 3033.
[39] W. Zhang, S. C. Tse, J. Lu, Y. Tao, M. S. Wong, J. Mater. Chem., 2010, 20, 2182.
[40] Y. Liu, X. Wan, B. Yin, J. Zhou, G. Long, S. Yin, Y. J. Chen, Mater. Chem., 2010, 20, 2464.
[41] B. Yin, L. Yang, Y. Liu, Y. Chen, Q. Qi, F. Zhang, S. Yin, Appl. Phys. Lett., 2010, 97, 023303.
[42] A. B. Tamayo, B. Walker, T. Q. Nguyen, J. Phys. Chem. C, 2008, 2, 11545.
[43] A. B. Tamayo, X. D. Dang, B. Walker, J. H. Seo, T. Kent, T. Q. Nguyen, Appl. Phys. Lett., 2009, 94, 103301.
[44] B. Walker, A. B. Tamayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, T. Q. Nguyen, Adv. Funct. Mater., 2009, 19, 3063.
[45] R. Fitzner, E. Mena-Osteritz, A. Mishra, G. Schulz, E. Reinold, M. Weil, C. Körner, H. Ziehlke, C. Elschner, K. Leo, M. Riede, M. Pfeiffer,C. Uhrich, P. Bauerle, J. Am. Chem. Soc., 2012, 134, 11064.
[46] J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li, Y. Chen, J. Am. Chem. Soc., 2013, 135
[47] C. Y. Mei, L. Liang, F. G. Zhao, J. T. Wang, L. F. Yu, Y. X. Li, W. S. Li, Macromolecules, 2013, 46, 7920.
[48] B. Burkhart, P. P. Khlyabich, T. C. Canak, T. W. LaJoie, B. C. Thompson, Macromolecules, 2011, 44, 1242.
[49] F. A. Arroyave, C. A. Richard, J. R. Reynolds, Org. Lett., 2012, 14, 6139.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56965-
dc.description.abstract本文主要設計、合成及分析一系列以含二噻吩并苯并噻二唑為主體之有機共軛高分子與小分子,探討分子結構對於材料性質的影響,以開發新型高性能共軛高分子與小分子材料為目標。
我們的研究主要分為兩個部分,首先在第一個部分,我們合成以二噻吩并苯并噻二唑為主體之高分子P(DTBTD-3EHT-BT-hex),藉由增加烷基鏈的方式解決溶解度與無法進行性質測量的問題;P(DTBTD-3EHT-BT-hex)的光學吸收範圍落在300-550 nm處,X光繞射分析實驗證實P(DTBTD-3EHT-BT-hex)形成薄膜時無結晶性;此高分子延續二噻吩并苯并噻二唑之特性具有低HOMO能階,然而其LUMO能階則相對較高;我們提出一些結構再修飾的方法期盼未來該結構應用於有機太陽能電池可以有光電轉換效率的突破。
第二部分,延續第一部分的實驗結構,我們合成一系列含有二噻吩并苯并噻二唑之共軛小分子DTBTD-terT-hex、DTBTD-hex-BF與DTBTD-2,3-DDec-terT,三者材料溶液狀態下主要的吸收光譜範圍皆落在400~550 nm間,成膜後DTBTD-terT-hex結構光學最大吸收峰紅位移達約600 nm處,且光學與電化學能隙為三種材料中數值最小;而在能階的部份隨著增加兩側之結構,HOMO能階依然維持於約-5.3 eV至-5.4 eV之間;分子堆疊的部份DTBTD-terT-hex與DTBTD-hex-BF承襲二噻吩并苯并噻二唑良好的共平面性,在X光繞射圖譜分析得知兩種材料皆具結晶性,表示分子在堆疊上有規則的排列。
綜合以上實驗,我們對於含二噻吩并苯并噻二唑之共軛高分子與小分子的結構設計將有更進一步的認識與了解,這將有助於未來設計高性能之含苯并噻二唑衍生物材料。
zh_TW
dc.description.abstractIn this thesis, a series of novel conjugated polymers and small molecules with dithienobenzothiadiazole (DTBTD), as structural core unit were designed and synthesized by Stille coupling and Suzuki coupling reactions. The correlations between the molecular structure packing, optical and electrochemical properties were investigated.
This thesis has been divided into two parts. In the first part, conjugated polymers containing dithienobenzothiadiazole (DTBTD) as an acceptor moieties and bithiophene (BT) and dihexyl-bithiophene (BT-hex) as donor moieties were designed and synthesized using stille cross-coupling reaction. The solubility, optical absorption spectra, X-ray diffraction spectra (XRD) and electrochemical properties of the resulting polymer P(DTBTD-3EHT-BT-hex) were characterized. The solubility of the P(DTBTD-3EHT-BT-hex) polymer is significantly improved as compared to the nonalkylated P(DTBTD-3EHT-BT) polymer. In solution, P(DTBTD-3EHT-BT-hex) exhibited broad absorption covering the range from 300 to 600 nm and with the optical band gap of 1.98 eV. The energy levels of P(DTBTD-3EHT-BT-hex) polymer possesses low-lying HOMO energy level which is about -5.46 eV. Results of XRD data revealed amorphous nature of the P(DTBTD-3EHT-BT-hex) polymer. We proposed that the side chain structural modification approach can advance better designing for conjugated polymers with high power conversion efficiency.
Based on the first part of our results, we further designed and synthesized a new series of conjugated small molecules such as DTBTD-terT-hex, DTBTD-hex-BF and DTBTD-2,3-DDec-terT with dithienobenzothiadiazole as a acceptor unit, and terthiophene and benzofuran as the donor side group. The impact of these different donor side groups on their solubility, optical, XRD and electrochemical properties were investigated. The physical properties of the synthesized small molecules showed good solubility, broad absorption bands within the range from 300 to 650 nm, and optical band gaps of 1.89 eV, 2.10 eV and 1.98 eV for DTBTD-terT-hex, DTBTD-hex-BF and DTBTD-2,3-DDec-terT, respectively. Furthermore, DTBTD-terT-hex displayed red shift absorption band compared to other small molecules. The XRD results clearly indicate that the structure of DTBTD-terT-hex and DTBTD-hex-BF have regular packing and good crystallinity when compared to the DTBTD-2,3-DDec-terT. These findings offer valuable guideline for further designing dithienobenzothiadiazole based small molecules to develop high-performance BHJ organic photovoltaic cells.
In summary, we have successfully designed, synthesized and characterized a family of polymers and small molecules containing dithienobenzothiadiazole as a acceptor unit. The achievement of structure-property correlations will be benefit of developing high performance conjugated semiconductor materials.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:32:02Z (GMT). No. of bitstreams: 1
ntu-103-R01549019-1.pdf: 14720158 bytes, checksum: a6ae3916362bf90e0065dbb37f71a1cb (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目 錄........................................................................................................................I
圖 目 錄.....................................................................................................................III
表 目 錄....................................................................................................................VII
摘 要..................................................................................................................VIII
Abstract...........................................................................................................................IX
小分子前驅物之合成路徑圖.........................................................................................XI
小分子材料之合成路徑圖............................................................................................XII
高分子單體之合成路徑圖..........................................................................................XIII
高分子材料之合成路徑圖..........................................................................................XIV
第一章、緒論.....................................................................................................................1
1-1 前言......................................................................................................................1
1-2 高分子太陽能電池..............................................................................................2
1-2-1 高分子太陽能電池之結構與發展...................................................................2
1-2-2 高分子太陽能電池之工作原理.......................................................................5
1-3 高分子材料之介紹..............................................................................................7
1-3-1 高分子材料與元件參數之關係.......................................................................7
1-3-2 高分子材料之結構設計.................................................................................10
1-4 有機共軛高分子之文獻回顧............................................................................14
1-5 有機共軛小分子之文獻回顧............................................................................18
第二章、改變單體結構對於含苯并噻二唑衍生物為主幹之高分子之影響與性質探
討.......................................................................................................................26
2-1 前言與研究動機................................................................................................26
2-1-1 共軛高分子材料之結構設計.........................................................................28
2-1-2 共軛高分子材料之合成路徑探討.................................................................28
2-2 實驗步驟............................................................................................................29
2-3 結果與討論........................................................................................................49
2-3-1 核磁共振光譜分析.........................................................................................49
2-3-2 質譜分析(LR - FAB) .....................................................................................56
2-3-3 元素分析.........................................................................................................57
2-3-4 光學性質分析(紫外光-可見光分光光譜儀) ................................................58
2-3-5 電化學性質分析 (循環伏特安培儀) ...........................................................65
2-3-6 X光繞射圖譜分析.........................................................................................67
2-4 結論....................................................................................................................68
第三章、含苯并噻二唑衍生物為主幹之共軛小分子之合成與性質探討..................70
3-1 前言與研究動機................................................................................................70
3-1-1 共軛小分子材料之結構設計.........................................................................70
3-1-2 共軛小分子材料之合成路徑之探討.............................................................72
3-2 實驗步驟............................................................................................................73
3-3 結果與討論........................................................................................................97
3-3-1 核磁共振光譜分析.........................................................................................97
3-3-2 質譜分析(LR - FAB) ...................................................................................112
3-3-3 元素分析.......................................................................................................114
3-3-4 光學性質分析 (紫外光-可見光分光光譜儀) ............................................115
3-3-5 電化學性質分析 (循環伏特安培儀) .........................................................126
3-3-6 X光繞射圖譜分析.......................................................................................129
3-4 結論..................................................................................................................132
第四章、結論與未來展望.............................................................................................133
第五章、參考文獻........................................................................................................134
附 錄...................................................................................................................137
dc.language.isozh-TW
dc.subject有機太陽能電池zh_TW
dc.subject低能隙共軛高分子zh_TW
dc.subject共平面性zh_TW
dc.subject二?吩并苯并?二唑zh_TW
dc.subject施蒂勒聚合zh_TW
dc.subject延伸共軛zh_TW
dc.subjectD-A結構zh_TW
dc.subjectStille couplingen
dc.subjectD-A structureen
dc.subjectextend conjugateen
dc.subjectorganic solar cellen
dc.subjectlow band gap polymeren
dc.subjectdithienobenzothiadiazoleen
dc.subjectplanarizatioen
dc.title以二噻吩并苯并噻二唑為主幹之共軛小分子與高分子之合成與性質探討zh_TW
dc.titleSynthesis and Characterization of Dithienobenzothiadiazole-containing Conjugated Polymers and Small Moleculesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳志堅(Jyh-Chien Chen),林金福(King-Fu Lin),戴子安(Chi-An Dai)
dc.subject.keyword有機太陽能電池,低能隙共軛高分子,共平面性,二?吩并苯并?二唑,施蒂勒聚合,延伸共軛,D-A結構,zh_TW
dc.subject.keywordorganic solar cell,low band gap polymer,dithienobenzothiadiazole,planarizatio,D-A structure,Stille coupling,extend conjugate,en
dc.relation.page195
dc.rights.note有償授權
dc.date.accepted2014-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
14.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved