請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56964完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建錦 | |
| dc.contributor.author | Yen-Chiu Li | en |
| dc.contributor.author | 李燕秋 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:32:01Z | - |
| dc.date.available | 2020-01-01 | |
| dc.date.copyright | 2014-08-16 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-06 | |
| dc.identifier.citation | [1] L.A. Adamic, J. Zhang, E. Bakshy, and M.S. Ackerman. Knowledge sharing and yahoo answers: everyone knows something. in Proceedings of the 17th international conference on World Wide Web. 2008. ACM.
[2] A. Anagnostopoulos, A.Z. Broder, E. Gabrilovich, V. Josifovski, and L. Riedel. Just-in-time contextual advertising. in Proceedings of the sixteenth ACM conference on Conference on information and knowledge management. 2007. ACM. [3] D. Andrzejewski, X. Zhu, M. Craven, and B. Recht. A framework for incorporating general domain knowledge into latent Dirichlet allocation using first-order logic. in Proceedings of the Twenty-Second international joint conference on Artificial Intelligence-Volume Volume Two. 2011. AAAI Press. [4] D.R. Bickers, H.W. Lim, D. Margolis, M.A. Weinstock, C. Goodman, E. Faulkner, C. Gould, E. Gemmen, and T. Dall, The burden of skin diseases: 2004: A joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. Journal of the American Academy of Dermatology, 2006. 55(3): p. 490-500. [5] D.M. Blei, A.Y. Ng, and M.I. Jordan, Latent dirichlet allocation. the Journal of machine Learning research, 2003. 3: p. 993-1022. [6] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vigna. The query-flow graph: model and applications. in Proceedings of the 17th ACM conference on Information and knowledge management. 2008. ACM. [7] A.Z. Broder, P. Ciccolo, M. Fontoura, E. Gabrilovich, V. Josifovski, and L. Riedel. Search advertising using web relevance feedback. in Proceedings of the 17th ACM conference on Information and knowledge management. 2008. ACM. [8] Pew Research Center (2013, December 16). Health Fact Sheet. from: http://www.pewinternet.org/fact-sheets/health-fact-sheet/. [9] P. Chatterjee, D.L. Hoffman, and T.P. Novak, Modeling the clickstream: Implications for web-based advertising efforts. Marketing Science, 2003. 22(4): p. 520-541. [10] Y. Choi, M. Fontoura, E. Gabrilovich, V. Josifovski, M. Mediano, and B. Pang. Using landing pages for sponsored search ad selection. in Proceedings of the 19th international conference on World wide web. 2010. ACM. [11] WebMD Health Corp. (2013, October 29). WebMD Announces Third Quarter Financial Results. from: http://investor.shareholder.com/wbmd/releasedetail.cfm?releaseid=801330&CompanyID=WBMD. [12] S.C. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman, Indexing by latent semantic analysis. JASIS, 1990. 41(6): p. 391-407. [13] G. Eysenbach, Recent advances: Consumer health informatics. BMJ: British Medical Journal, 2000. 320(7251): p. 1713. [14] A. Ghose and S. Yang, An empirical analysis of search engine advertising: Sponsored search in electronic markets. Management Science, 2009. 55(10): p. 1605-1622. [15] T.L. Griffiths and M. Steyvers, Finding scientific topics. Proceedings of the National academy of Sciences of the United States of America, 2004. 101(Suppl 1): p. 5228-5235. [16] L. Guo, E. Tan, S. Chen, X. Zhang, and Y.E. Zhao. Analyzing patterns of user content generation in online social networks. in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. 2009. ACM. [17] G. Heinrich. Parameter estimation for text analysis. Technical report, 2005. [18] L. Hennig and D. Labor. Topic-based Multi-Document Summarization with Probabilistic Latent Semantic Analysis. in RANLP. 2009. [19] T. Hofmann. Probabilistic latent semantic indexing. in Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. 1999. ACM. [20] T. Hofmann, Unsupervised learning by probabilistic latent semantic analysis. Machine learning, 2001. 42(1-2): p. 177-196. [21] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions. in Proceedings of the 15th international conference on World Wide Web. 2006. ACM. [22] G. Keller, Managerial statistics. 8 ed. 2008: South-Western Cengage Learning. [23] C.A. Kulikowski, Artificial intelligence methods and systems for medical consultation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1980(5): p. 464-476. [24] S. Kullback and R.A. Leibler, On information and sufficiency. The Annals of Mathematical Statistics, 1951: p. 79-86. [25] T.K. Landauer and S.T. Dumais, A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review, 1997. 104(2): p. 211. [26] M. Langheinrich, A. Nakamura, N. Abe, T. Kamba, and Y. Koseki, Unintrusive customization techniques for Web advertising. Computer Networks, 1999. 31(11): p. 1259-1272. [27] J.-H. Lee, J. Ha, J.-Y. Jung, and S. Lee, Semantic contextual advertising based on the open directory project. ACM Transactions on the Web (TWEB), 2013. 7(4): p. 24. [28] G. Luo, C. Tang, and S.B. Thomas, Intelligent personal health record: experience and open issues. Journal of medical systems, 2012. 36(4): p. 2111-2128. [29] G. Luo, S.B. Thomas, and C. Tang, Automatic home medical product recommendation. Journal of medical systems, 2012. 36(2): p. 383-398. [30] F. Monay and D. Gatica-Perez. Plsa-based image auto-annotation: constraining the latent space. in Proceedings of the 12th annual ACM international conference on Multimedia. 2004. ACM. [31] M. Mort, C.R. May, and T. Williams, Remote doctors and absent patients: acting at a distance in telemedicine? Science, Technology & Human Values, 2003. 28(2): p. 274-295. [32] X.-H. Phan, C.-T. Nguyen, D.-T. Le, L.-M. Nguyen, S. Horiguchi, and Q.-T. Ha, A hidden topic-based framework toward building applications with short Web documents. Knowledge and Data Engineering, IEEE Transactions on, 2011. 23(7): p. 961-976. [33] D.V. Phuong and T.M. Phuong. A keyword-topic model for contextual advertising. in Proceedings of the Third Symposium on Information and Communication Technology. 2012. ACM. [34] H.E. Pople, J. Myers, and R. Miller. DIALOG: A Model Of Diagnostic Logic For Internal Medicine. in IJCAI. 1975. Citeseer. [35] F. Radlinski, A. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski, and L. Riedel. Optimizing relevance and revenue in ad search: a query substitution approach. in Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. 2008. ACM. [36] H. Raghavan and R. Iyer. Probabilistic first pass retrieval for search advertising: from theory to practice. in Proceedings of the 19th ACM international conference on Information and knowledge management. 2010. ACM. [37] B. Ribeiro-Neto, M. Cristo, P.B. Golgher, and E. Silva de Moura. Impedance coupling in content-targeted advertising. in Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval. 2005. ACM. [38] C. Rohrer and J. Boyd. The rise of intrusive online advertising and the response of user experience research at Yahoo! in CHI'04 Extended Abstracts on Human Factors in Computing Systems. 2004. ACM. [39] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-topic model for authors and documents. in Proceedings of the 20th conference on Uncertainty in artificial intelligence. 2004. AUAI Press. [40] N.C. Rowe, Artificial intelligence through Prolog. 1988, Upper Saddle River, NJ: Prentice-Hall, Inc. 451. [41] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. 3 ed. 2010, Upper Saddle River, NJ: Prentice-Hall, Inc. [42] G. Salton and M.J. McGill, Introduction to Modern Information Retrieval. 1986: McGraw-Hill, Inc. 400. [43] G. Salton and C. Buckley, Term-weighting approaches in automatic text retrieval. Information processing & management, 1988. 24(5): p. 513-523. [44] E.H. Shortliffe and B.G. Buchanan, A model of inexact reasoning in medicine. Mathematical biosciences, 1975. 23(3): p. 351-379. [45] E. Sillence, C. Hardy, and P. Briggs. Why don't we trust health websites that help us help each other?: an analysis of online peer-to-peer healthcare. in Proceedings of the 5th Annual ACM Web Science Conference. 2013. ACM. [46] E. Vargiu, A. Giuliani, and G. Armano, Improving contextual advertising by adopting collaborative filtering. ACM Transactions on the Web (TWEB), 2013. 7(3): p. 13. [47] X. Wu, J. Yan, N. Liu, S. Yan, Y. Chen, and Z. Chen. Probabilistic latent semantic user segmentation for behavioral targeted advertising. in Proceedings of the Third International Workshop on Data Mining and Audience Intelligence for Advertising. 2009. ACM. [48] D. Xing and M. Girolami, Employing Latent Dirichlet Allocation for fraud detection in telecommunications. Pattern Recognition Letters, 2007. 28(13): p. 1727-1734. [49] L. Yao, D. Mimno, and A. McCallum. Efficient methods for topic model inference on streaming document collections. in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. 2009. ACM. [50] W.-t. Yih, J. Goodman, and V.R. Carvalho. Finding advertising keywords on web pages. in Proceedings of the 15th international conference on World Wide Web. 2006. ACM. [51] W. Zhang, D. Wang, G.-R. Xue, and H. Zha, Advertising Keywords Recommendation for Short-Text Web Pages Using Wikipedia. ACM Transactions on Intelligent Systems and Technology (TIST), 2012. 3(2): p. 36. [52] K. Zhongbao and Z. Changshui, Reply networks on a bulletin board system. Physical Review E, 2003. 67(3): p. 036117. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56964 | - |
| dc.description.abstract | 隨著健康照護網站的日益興盛,人們開始對替這類網站設計專屬的醫療商品廣告系統產生興趣。模糊而簡略的使用者訊息讓使用者易接收低相關度的廣告,進而造成低點擊率和較差的使用體驗。本論文試圖利用推理引擎和語意分析技術改善廣告系統的效能。推測而得的使用者健康狀況以及訊息和廣告間的隱藏語意關係能豐富已知內容,提升廣告選擇的準確度。在實驗中,本論文提出的方法被證實有效且優於許多其他方法。根據實驗結果可推測,使用領域相關知識擴增內容資訊量能顯著的改善廣告系統的效能。 | zh_TW |
| dc.description.abstract | The growing access to healthcare websites has aroused the interest of designing a specific advertising system focusing on healthcare products. For the purpose of increasing the poor ad-selecting performance resulting from the succinctness and ambiguity of user messages, we introduced semantic analysis and an inference engine into our proposed system. By inferring the illness which users possibly suffer from and bridging the vocabulary gaps between user messages and ads, our method is confirmed to be able to outperform other approaches significantly in precision and coverage. Based on our findings, we conclude that advertising systems could be enhanced by using the domain-specific knowledge to augment the user messages and ads. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:32:01Z (GMT). No. of bitstreams: 1 ntu-103-R01725001-1.pdf: 1982472 bytes, checksum: 2f40f8a35f52964f5fb9cb05489a3a7a (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv LIST OF FIGURES vii LIST OF TABLES viii 1.Introduction 1 2.Related Work 4 2.1 Medical System 4 2.2 Online Advertising 5 3.Methodology 9 3.1 Semantic Analysis 10 3.2 Inference Engine 15 3.3 Relevance Calculation 18 4. Experiments 20 4.1 Dataset and Performance Matrices 20 4.2 System Component Evaluation 21 4.3 Comparing with Other Ad-selecting Approaches 25 5. Concluding Remarks 30 Reference 32 | |
| dc.language.iso | en | |
| dc.subject | 語意分析 | zh_TW |
| dc.subject | 線上廣告 | zh_TW |
| dc.subject | 推理引擎 | zh_TW |
| dc.subject | 醫療商品廣告 | zh_TW |
| dc.subject | online advertising | en |
| dc.subject | sematic analysis | en |
| dc.subject | inference engine | en |
| dc.subject | healthcare product advertising | en |
| dc.title | 使用隱含狄利克雷分佈和知識推理引擎之智慧型健康照護廣告方法 | zh_TW |
| dc.title | An Intelligent Healthcare Advertising Method using Latent Dirichlet Allocation and Knowledge Inference Engine | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳孟彰,盧信銘,蔡銘峰 | |
| dc.subject.keyword | 線上廣告,語意分析,推理引擎,醫療商品廣告, | zh_TW |
| dc.subject.keyword | online advertising,sematic analysis,inference engine,healthcare product advertising, | en |
| dc.relation.page | 38 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-06 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
