請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56959完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永傳 | |
| dc.contributor.author | Yu-Chi Lin | en |
| dc.contributor.author | 林育奇 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:31:56Z | - |
| dc.date.available | 2019-08-14 | |
| dc.date.copyright | 2014-08-14 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-06 | |
| dc.identifier.citation | 1. Lange, K., Cser, L., Geiger, M., and Kals, J. A. S., “Tool Life and Tool Quality in Bulk Metal Forming,” Annals of CIRP-Manuf. Technol., Vol. 41, No. 2, pp.667-675, 1992.
2. Pawlowski, L., “Thick Laser Coatings: A Review,” Journal of Thermal Spray Technology, Vol. 8, No. 2, pp. 279-295, 1999. 3. Kim, H. I., Park, H. S., Koo, J. M., Seok, C. S., Yang, S. H., and Kim, M. Y., “Evaluation of Welding Characteristics for Manual Overlay and Laser Cladding Materials in Gas Turbine Blade,” Journal of Mechanical Science and Technology, Vol. 26, No. 7, pp. 2015-2018, 2012. 4. Ahn, D. G., “Application of Laser Assisted Metal Rapid Tooling Process to Manufacture of Molding & Forming Tools – State of the Art,” International Journal of Precision Engineering and Manufacturing, Vol. 12, No. 5, pp. 925-938, 2011. 5. Ion, J. C., “Laser Processing of Engineering Materials,” ELSEVIER, pp. 298-326, 2005. 6. Cui, C., Guo, Z., Liu, Y., Xie, Q., Wang, Z., Hu, J., and Yao, Y.,” Characteristics of Cobalt-based Alloy Coating on Tool Steel Prepared by Powder Feeding Laser Cladding,” Optics & Laser Technology, Vol. 39, No. 8, pp. 1544-1550, 2007. 7. Suh, J. H., Kim, J. S., Han, J. H., Lee, D. H., and Hwang, S. S., Development of a Technology for Amorphous Material (Co-free) Hardfacing on Primary Side Component Materials Using Laser Beam to Improve Their Wear, Erosion, Corrosion Resistance,” KAERI, 2000. 8. Navas, C., Conde, A., Cadenas, M., and de Damborenea, J.,”Tribological Properties of Laser Clad Stellite 6 Coatings on Steel Substrates,” Surface 69 Engineering, Vol. 22, No. 1, pp. 26-34, 2006. 9. Persson, D. H. E., “On the Mechanisms behind the Tribological Performance of Stellites,” Ph.D. Thesis, Science and Technology, Uppsala University, 2005. 10. d’Oliveira, A. S. C. M., Vilar, R., and Feder, C. G., “High Temperature Behaviour of Plasma Transferred Arc and Laser Cobased Alloy Coatings,” Applied Surface Science, Vol. 201, No. 1-4, pp. 154-160, 2002. 11. Persson, D. H. E., Jacobson, S., and Hogmark, S., “Antigalling and Low Friction Properties of a Laser Processed Co-based Material,” Journal of Laser Applications, Vol. 15, No. 2, pp. 115-119, 2003. 12. Radu, I. and Li, D. Y., “Investigation of the Role of Oxide Scale on Stellite 21 Modified with Yttrium in Resisting Wear at Elevated Temperatures,” Wear, Vol. 259, No. 1-6, pp. 453-458, 2005. 13. Stern, K. H., “Metallurgical and Ceramic Protective Coatings,” Chapman & Hall, pp. 74-111, 1996. 14. Jiang, W. H. and Kovacevic, R., “Laser Deposited TiC/H13 Tool Steel Composite Coatings and Their Erosion Resistance,” Journal of Materials Processing Technology, Vol. 186, No. 1-3, pp. 331-338, 2007. 15. Tobar, M. J., Amado, J. M., A lvarez, C., Garcia, A., Varela, A., and Yanez, A., “Characteristics of Tribaloy T-800 and T-900 Coatings on Steel Substrates by Laser Cladding,” Surface & Coatings Technology, Vol. 202, No. 11, pp.2297-2301, 2008. 16. Ahn, D. G., “Hardfacing Technologies for Improvement of Wear Characteristics of Hot Working Tools: A Review” International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 7, pp. 1271-1283, 2013. 17. Tian, Y.S., Chen, C.Z., Chen, L.X., and Huo, Q.H., “Microstructures and wear properties of composite coatings produced by laser alloying of Ti-6Al-4V with 70 graphite and silicon mixed powders,” Material Letters, Vol. 60, pp. 109-113, 2006. 18. Lin, Y.C. and Lin, Y.C., “Microstructure and tribological performance of Ti-6Al-4V cladding with SiC powder,” Surface & Coatings Technology, Vol. 205, No. 23-24, pp. 5400-5405, 2011. 19. Herbst, S., Williams, S. and Ganguly, S. “A Feasibility Study on Manufacturing of Functionally Graded Structures Using SiC Ceramic Powder in a Steel-Based Matrix by Gas Tungsten Arc Welding (GTAW),” Steel Research International, Vol.83, No. 6, pp. 546-553, 2012. 20. Lin, Y. C., Wang, S. W. and Wu, K. E., “The wear behaviour of machine tool guideways clad with W-Ni, W-Co and W-Cu using gas tungsten arc welding,” Surface & Coatings Technology, Vol. 172, No. 2-3, pp. 158-165, 2003. 21. Lin, Y. C. and Wang, S. W. “Wear behavior of ceramic powder cladding on an S50C steel surface,” Tribology International, Vol. 36, No. 1, pp. 1-9, 2003. 22. Kashani, H., Amadeh, A., and Vatanara, M. R., “Improvement of Wear Resistance of Hot Working Tool Steel by Hardfacing Part 2 Case Study,” Mater. Sci. Technol., Vol. 24, No. 3, pp. 356-360, 2008. 23. Peng, D. X., “The effects of welding parameters on wear performance of clad layer with TiC ceramic,” Industrial Lubrication and Tribology, Vol. 64, No. 5, pp.303-311, 2012. 24. Holmberg, K., and Matthews, A., “Coatings tribology,” Amsterdam, Elsevier,1994. 25. Lin, Y.C. and Lin, Y.C., “Elucidation of microstructure and wear behaviors of Ti-6Al-4V cladding using tungsten boride powder by the GTAW method,” Journal of Coatings Technology and Research, Vol. 8, No. 2, pp. 247-253, 2011. 26. Hutchings, I.M., “Friction and wear of engineering materials,” Boca Raton, CRC Press, 1992.71 27. Juang, S. C. and Tarng, Y. S., “Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel,” Journal of Materials Processing Technology, Vol. 122, No. 1, pp.33-37, 2002. 28. Lei, T. C., Ouyang, J. H., Pei, Y. T. and Zhou, Y., “Microstructure and Wear-Resistance of Laser Clad Tic Particle-Reinforced Coating,” Materials Science and Technology, Vol. 11, No. 5, pp.520-525, 1995. 29. Fan, H. G., Tsai, H. L. and Na, S. J., “Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding,” International Journal of Heat and Mass Transfer, Vol. 44, No. 2, pp.417-428, 2001. 30. 李明奇,“製程參數對中碳鋼表面被覆SiC 粉末耐磨耗性能之影響”,國立台 灣科技大學碩士論文,1998。 31. Grunenwald, B., Bischoff, E., Shen, J., and Dausinger, F., “Laser Surface Alloying of Case Hardening Steel with Tungsten Carbide and Carbon,” Materials Science and Technology, Vol. 8, No. 7, pp.637-643, 1992. 32. Ocken, H., “Performance of NOREMTM Hardfacing Alloys,” Electric Power Research Institute Inc.(EPRI), TR-112993, 1999. 33. Ohriner, E. K., Wada, T., Whelan, E. P. and Ocken, H. “The Chemistry and Structure of Wear-Resistant, Iron-Base Hardfacing Alloys,” Metallurgical Transactions a-Physical Metallurgy and Materials Science, Vol. 22, No. 5, pp.983-991, 1991. 34. Ocken, H., “The Galling Wear Resistance of New Iron-Base Hardfacing Alloy: a Comparison with Established Cobalt-and Nickel-base Alloys,” Surf. Coat. Technol., Vol. 76-77, No. 2, pp. 456-461, 1995. 35. Wang, S. W., Lin, Y. C. and Tsai, Y. Y., “The effects of various ceramic-metal on wear performance of clad layer,” Journal of Materials Processing Technology, Vol.140, pp. 682-687, 2003.72 36. Lin, Y. C., Wang, S. W. and Lin, Y. C., “Analysis of microstructure and wear performance of WC-Ti clad layers on steel, produced by gas tungsten arc welding,” Surface & Coatings Technology, Vol. 200, No. 7, pp. 2106-2113, 2005. 37. Farhani, M., Amadeh, A., Kashani, H., and Saeed-Akbari, A., “The Study of Wear Resistance of a Hot Forging Die, Hardfaced by a Cobalt-base Superalloy,” Materials Science Forum, Vol. 30, pp. 212-218, 2006. 38. Kashani, H., Amadeh, A., and Ghasemi, H. M., “Room and High Temperature Wear Behaviors of Nickel and Cobalt Base Weld Overlay Coatings on Hot Forging Dies,” Wear, Vol. 262, No. 7-8, pp. 800-806, 2007. 39. 張瑞模,“低碳鋼表面氬銲被覆氮化鋁之磨耗研究”,國立台灣科技大學碩士 論文”,1995。 40. Kim, J. K. and Kim, S. J., “The Temperature Dependence of the Wear Resistance of Iron-Base NOREM 02 Hardfacing Alloy,” Wear, Vol. 237, No. 2, pp. 217-222, 2000. 41. 伍凱義,“鑄鐵表面被覆耐磨耗材料之研究”,國立台灣科技大學碩士論文, 2000。 42. Kohopaa, J., Hakonen, H., and Kivivuori, S., “Wear Resistance of Hot Forging Tools Surfaced by Welding,” Wear, Vol. 130, No. 1, pp. 103-112, 1989. 43. Liu, D. S., Liu, R. P., Wei, Y. H. and Pan, P., “Influence of Carbon Content on Shock Hardening Behavior of Cobalt-Base Hardfacing Deposits,” Materials and Manufacturing Processes, Vol. 28, No. 6, pp. 643-649, 2013. 44. Fouilland, L., El Mansori, M., and Gerland, M., “Role of Welding Process Energy on the Microstructural Variations in a Cobalt Base Superalloy Hardfacing,” Surface & Coatings Technology, Vol. 201, No. 14, pp. 6445-6451, 2007. 45. Nicholson, F., “Weld Metal Deposit Coated Tool Steel,” US Patent 4110514, 1978.73 46. Levin, B. F., DuPont, J. N., and Marder, A. R., “Weld Overlay Coatings for Erosion Control,” Wear, Vol. 181-183, No. 2, pp. 810-820, 1999. 47. Aoh, J. N. and Chen, J. C., “On the Wear Characteristics of Cobalt based Hard facing Layer after Thermal Fatigue and Oxidation,” Wear, Vol. 250, No. 1-12, pp.611-620, 2001. 48. Gurumoorthy, K., Kamaraj, M., Rao, K. P., Rao, A. S., and Venugopal, S.,“Microstructural Aspects of Plasmas Transferred Arc Surfaced Ni-based Hardfacing Alloy,” Mater. Sci. Eng. A, Vol. 456, No. 1-2, pp. 11-19, 2007. 49. Pradeep, G. R. C., Ramesh, A., and Durga Prasad, B., “A Review Paper on Hardfacing Processes and Materials,” International Journal of Engineering Science and Technology, Vol. 2, No. 11, pp. 6507-6510, 2010. 50. Lin, C. M., Chang, C. M., Chen, J. H., Hsieh, C. C. and Wu, W. T.,“Microstructure and wear characteristics of high-carbon Cr-based alloy claddings formed by gas tungsten arc welding (GTAW),” Surface & Coatings Technology, Vol. 205, No. 7, pp. 2590-2596, 2010. 51. Chang, C. M., Chen, Y. C. and Wu, W. T.,“Microstructural and abrasive characteristics of high carbon Fe-Cr-C hardfacing alloy,” Tribology International, Vol. 43, No. 5-6, pp. 929-934, 2010. 52. Wang, X. H., Zhang, M. and Du, B. S., “Fabrication In Situ TiB2-TiC-Al2O3 Multiple Ceramic Particles Reinforced Fe-Based Composite Coatings by Gas Tungsten Arc Welding,” Tribology Letters, Vol. 41, No. 1, pp. 171-176, 2011. 53. Yaz, M., Yilmaz, S. O. and Teker, T., “Study to evaluate the abrasive wear resistant behavior of materials coated with Fe-Cr-Si-C,” Kovove Materialy-Metallic Materials, Vol. 49, No. 4, pp. 297-306, 2011. 54. Gholipour, A., Shamanian, M. and Ashrafizadeh, F., “Microstructure and wear behavior of stellite 6 cladding on 17-4 PH stainless steel,” Journal of Alloys and 74 Compounds, Vol. 509, No. 14, pp. 4905-4909, 2011. 55. Peng, D. X., “Optimization of Welding Parameters on Wear Performance of Cladded Layer with TiC Ceramic via a Taguchi Approach,” Tribology Transactions, Vol. 55, No. 1, pp. 122-129, 2012. 56. Peng, D. X., Kang, Y., Li, Z. X. and Chang, S. Y., “Wear behavior of ceramic powder cladded on carbon steel surface by gas tungsten arc welding,” Industrial Lubrication and Tribology, Vol. 65, No. 2, pp. 129-134, 2013. 57. Guo, L. J., Wang, X. B., Zhang, P. P., Yang, Z. H. and Wang, H. B. “Synthesis of Fe based ZrB2 composite coating by gas tungsten arc welding,” Materials Science and Technology, Vol. 29, No. 1, pp. 19-23, 2013. 58. Chen, J. H., Hsieh, C. C., Hua, P. S., Chang, C. M., Lin, C. M., Wu, P. T. Y., and Wu, W. T., “Microstructure and abrasive wear properties of Fe-Cr-C hardfacing alloy cladding manufactured by Gas Tungsten Arc Welding (GTAW),” Metals and Materials International, Vol. 19, No. 1, pp. 93-98, 2013. 59. Axen, N., Alahelisten, A., and Jacobson, S., “Abrasive wear of alumina fibre-reinforced aluminium,” Wear, Vol. 173, pp. 95-104, 1994. 60. Karl-Heinz, Z.G., “Microstructure and wear of materials,” Amsterdam, Elsevier, 1987. 61. Guilemany, J.M., Miguel, J.M., Vizcaino, S.and Climent, F., “Role of three-body abrasion wear in the sliding wear behaviour of WC-Co coatings obtained by thermal spraying,” Surface & Coatings Technology, Vol. 140, pp. 141-146, 2001. 62. 王世衛,“陶瓷粉末被覆於中碳鋼表面的微觀結構與磨耗行為研究”,國立台 灣科技大學博士論文,2003。 63. Tiller, W. A., Jackson, K. A., Rutter, J. W., and Chalmers, B., “The Redistribution of Solute Atoms during the Solidification of Metals,” Acta Metallurgica, Vol. 1, No. 4, pp. 428-437, 1953.75 64. Mullins, W. W. and Sekerka, R. F., “Stability of a planar interface during solidification of a dilute binary alloy,” Journal of applied physics, Vol. 35, No. 2, pp. 444-451, 1964. 65. Hussain, A., Van Ende, M. A., Kim, J. and Jung, I. H., “Critical thermodynamic evaluation and optimization of the Co-Nd, Cu-Nd and Nd-Ni systems,” Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 41, pp. 26-41, 2013. 66. Liu, Y. J., Kang, Z. T. and Wang, J., “Thermodynamic basis and related phase equilibria for Bi-Li and Bi-Na binary systems,” Thermochimica Acta, Vol. 558, pp.53-60, 2013. 67. De Donder; Progoine & Defay, p. 69; Guggenheim, p. 37,240 68. 劉國雄、林樹均、李勝隆、鄭晃忠、葉鈞蔚,“工程材料科學”,全華科技圖 書股份有限公司,1996。 69. G.E.Dieter, “Mechanical metallurgy,” London, McGraw-Hill, 1988. 70. 黃振賢,“金屬熱處理”,文京圖書有限公司,2000。 71. Sin, H., Saka, N. and Suh, N.P., “Abrasive wear mechanisms and the grit size effect,” Wear, Vol. 55, No. 1, pp.163-190, 1979. 72. Stachowiak, G.W. and Batchelor, A.W., “Engineering tribology,” Amsterdam, Elsevier, New York, 1993. 73. Archard, J. F., “Contact and Rubbing of Flat Surfaces,” Journal of Applied Physics, Vol. 24, No. 8, pp. 981-988, 1953. 74. Horst, C., “Tribology: a systems approach to the science and technology of friction, lubrication and wear,” Amsterdam, Elsevier Scientific Pub. Co., New York, 1978. 75. Pokropivny, V.V., Skorokhod, V.V. and Pokropivny, A.V., “Atomistic mechanism of adhesive wear during friction of atomic-sharp tungsten asperity over (114)76 bcc-iron surface,” Materials letters, Vol. 31, pp. 49-54, 1997. 76. Markov, D. and Kelly, D., “Mechanisms of adhesion-initiated catastrophic wear: pure sliding,” Wear, Vol. 239, pp. 189-210, 2000. 77. Quinn, T.F.J., Sullivan, J.L. and Rowson, D.M., “Origins and development of oxidational wear at low ambient temperatures,” Wear, Vol. 94, pp. 175-191, 1984. 78. Quinn, T.F.J. and Winer, W.O., “An experimental study of the “hot-spots” occurring during the oxidational wear of tool steel on sapphire,” Journal of Tribology, Vol. 109, pp. 315-320, 1987. 79. Vardavoulias, M., “The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials,” Wear, Vol. 173, pp. 105-114,1994. 80. Quinn, T.F.J., “ Computional methods applied to oxidational wear,” Wear, Vol.199, pp. 169-180, 1996. 81. Quinn, T.F.J., “Oxidational wear modeling part Ⅲ. The effects of speed and elevated temperatures,” Wear, Vol. 216, pp. 262-275, 1998. 82. Quinn, T.F.J., “The oxidational wear of low alloy steels,” Tribology International,Vol. 35, pp. 691-715, 2002. 83. Suh, N. P., “Delamination Theory of Wear,” Wear, Vol. 25, No.1, pp. 111-124,1973. 84. Jahanmir, S., Suh, N. P. and Abrahamson, E. P., “Microscopic Observations of Wear Sheet Formation by Delamination,” Wear, Vol. 28, No.2, pp. 235-249, 1974. 85. Jahanmir, S., Abrahamson, E. P. and Suh, N. P. “Sliding Wear-Resistance of Metallic Coated Surfaces,” Wear, Vol. 40, No.1 , pp. 75-84, 1976. 86. Axen, N. and Jacobson, S., “A Model for the Abrasive Wear-Resistance of Multiphase Materials,” Wear, Vol. 174, No.1-2, pp. 187-199, 1994. 87. Axen, N., and Lundberg, B., “Abrasive wear in intermediate mode of multiphase 77 materials,” Tribology International, Vol. 28, No.8, pp. 523-529, 1995. 88. Lin, Y. C., and Cho, Y. H., “Elucidating the microstructure and wear behavior for multicomponent alloy clad layers by in situ synthesis,” Surface & Coatings Technology, Vol. 202, No.19, pp. 4666-4672, 2008. 89. Lin, Y. C., and Cho, Y. H., “Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ,” Surface & Coatings Technology, Vol. 203, No.12, pp.1694-1701, 2009. 90. Wang, A. G. and Hutchings, I. M., “Wear of alumina fibre-aluminium metal matrix composites by two-body abrasion,” Materials Science and Technology, Vol. 5, No.1, pp. 71-76, 1989. 91. Oliver, W. C. and Pharr, G. M., “An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, Vol. 7, No.6, pp. 1564-1583, 1992. 92. Brinson, H.F., “Engineered materials handbook,” Vol. 4, ASM International, Metals Park, Ohio, 1987. 93. Liu, H. T., Liu, Z. Y., Qiu, Y. Q., Sun, Y. and Wang, G. D., “Microstructure, texture and magnetic properties of strip casting Fe-6.2 wt%Si steel sheet,” Journal of Materials Processing Technology, Vol. 212, No. 9, pp. 1564-1583, 2012. 94. Lin, Y. C. and Chang, K. Y., “Elucidating the microstructure and erosive wear of ceramic powder alloying on AISI 1050 steel,” Surface & Coatings Technology, Vol. 207, pp. 493-502, 2012. 95. Edward, H. and Edward, L. “ASM Handbook-Alloy phase diagrams,” Vol. 3,ASM International, Metals Park, Ohio, 1992. 96. Lee, I. K., Chung, C. L., Lee, Y. T. and Chien, Y. T., “Effect of Thermal Refining on Mechanical Properties of Annealed SAE 4130 by Multilayer GTAW,” Journal 78 of Iron and Steel Research International, Vol. 212, No. 9, pp. 1564-1583, 2012. 97. Fan, C., Chen, M. C., Chang, C. M. and Wu, W. T., “Microstructure change caused by (Cr,Fe)(23)C-6 carbides in high chromium Fe-Cr-C hardfacing alloys,” Surface & Coatings Technology, Vol. 201, No. 3-4, pp. 908-912, 2006. 98. You, X. Q., Zhang, C. J., Liu, N., Huang, M. P. and Ma, J. G., “Laser surface melting of electro-metallurgic WC/steel composites,” Journal of Materials Science, Vol. 43, No. 8, pp. 2929-2934, 2008. 99. Lacaze, J. and Sundman, B., “An assessment of the Fe-C-Si system,” Metallurgical Transactions a-Physical Metallurgy and Materials Science, Vol. 22, No. 10, pp. 2211-2223, 1991. 100. Gopalakrishnan, P., Shankar, P., Rao, R. V. S., Sundar, M. and Ramakrishnan, S.S., “Laser surface modification of low carbon borided steels,” Scripta Materialia, Vol. 44, No. 5, pp. 707-712, 2001. 101. Kuo, C. W., Fan, C., Wu, S. H. and Wu, W., “Microstructure and wear characteristics of hypoeutectic, eutectic and hypereutectic (Cr,Fe)(23)C-6 carbides in hardfacing alloys,” Materials Transactions, Vol. 48, No. 9, pp. 2324-2328,2007. 102. Chang, C. M., Lin, C. M., Hsieh, C. C., Chen, J. H. and Wu, W. T., “Micro-structural characteristics of Fe-40 wt%Cr-xC hardfacing alloys with [1.0-4.0 wt%] carbon content,” Journal of Alloys and Compounds, Vol. 487, No. 1-2, pp. 83-89, 2009. 103. Chen, J. H., Chen, P. N., Lin, C. M., Chang, C. M., Chang, Y. Y. and Wu, W., “Microstructure and wear properties of multicomponent alloy cladding formed by gas tungsten arc welding (GTAW),” Surface & Coatings Technology, Vol. 203, No.20-21, pp. 3231-3234, 2009. 104. Chen, J. H., Chen, P. N., Hua, P. H., Chen, M. C., Chang, Y. Y. and Wu, W.,79 “Deposition of Multicomponent Alloys on Low-Carbon Steel Using Gas Tungsten Arc Welding (GTAW) Cladding Process,” Materials Transactions, Vol. 50, No. 3,pp. 689-694, 2009. 105. Peng, D. X. and Kang, Y., “Wear behavior of ceramic powder and nano-diamond cladding on carbon steel surface,” Industrial Lubrication and Tribology, Vol. 66, No. 2, pp. 272-281, 2014. 106. Lin, C. M., Chang, C. M., Chen, J. H., Hsieh, C. C. and Wu, W., “Microstructural Evolution of Hypoeutectic, Near-Eutectic, and Hypereutectic High-Carbon Cr-Based Hard-Facing Alloys,” Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, Vol. 40A, No. 5, pp. 1031-1038,2009. 107. Wang, X. H., Song, S. L., Zou, Z. D. and Qu, S. Y., “Fabricating TiC particles reinforced Fe-based composite coatings produced by GTAW multi-layers melting process,” Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Vol. 441, No. 1-2, pp. 60-67, 2006. 108. 李文雄,“製程參數對不同合金成份被覆層微結構與磨耗行為之影響”,國立 台灣科技大學碩士論文,2011。 109. 柳耀鈞,“球墨鑄鐵表面被覆陶瓷粉末及合金元素之耐磨耗行為研究”,國立 台灣科技大學碩士論文,2011。 110. 白家賓,“304L 不鏽鋼表面被覆陶瓷粉末之微結構與磨耗行為研究”,國立 台灣科技大學碩士論文,2012。 111. 高鈺涵,“Ti-6Al-4V 合金表面被覆碳化硼及合金元素(Ni、Cr、Si、W)之微結構與磨耗行為研究”,國立台灣科技大學碩士論文,2009。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56959 | - |
| dc.description.abstract | 本論文將JIS SKD11 工具鋼、JIS SKD61 模具鋼及Ti-6Al-4V 鈦合金基材表
面施以氣體遮護鎢弧銲被覆(Gas Tungsten Arc Welding, GTAW)表面強化處理,研究強化材料種類對於被覆層之顯微組織、機械性質及耐磨耗能力的影響,並將相關結果整理成可供人們參考使用的資料庫,資料庫中包含被覆參數、硬度及被覆層的強化相等相關資料。本論文主要分為三大部分進行探討: (一) 分別被覆四種不同陶瓷粉末做為JIS SKD11 工具鋼基材之強化 JIS SKD11 工具鋼表面分別被覆不同的四種陶瓷粉末(碳化矽(SiC)、碳化鎢 (WC)、硼化鎢(WB)與氮化鈦(TiN))後進行被覆層厚度之量測,其中以WB 粉末 之被覆層最厚(約6 mm),而TiN 粉末之被覆層最薄(約0.3 mm)。經由被覆層組 成相之分析結果得知SiC 粉末之被覆層主要由 [Cr,Fe]7C3+Fe0.905Si0.095 共晶組織與Fe0.905Si0.095 等相為主,WC 粉末之被覆層中主要以FexWxC(x=2,3) 與M3C(M=Fe,Cr,W) 等相為主, WB 粉末之被覆層則以α -Fe 與Fe23B6+M23C6(M=Fe,Cr,W)共晶組織等相為主,最後TiN 粉末之被覆層以TiN 與α-Fe+Cr1.97Ti1.07 等相為主。經維克氏硬度量測後得知,TiN 粉末之被覆層有最高的硬度(約2200-2300 HV),SiC 粉末之被覆層硬度最低(約750-820 HV)。雖然SKD11 工具鋼被覆層有高硬度,但是在被覆過後的熱影響區卻因為基材本身高Cr 及C 的含量,導致顯微組織中殘留較多的沃斯田鐵,使熱影響區明顯軟化。利用奈米壓痕器針對被覆層中各組成相進行硬度及彈性係數之量測,其結果顯示WB粉末之被覆層中的Fe23B6+M23C6(M=Fe,Cr,W)共晶組織有最高的硬度(約21.9GPa),而TiN 粉末之被覆層中的TiN 相有最高的彈性係數(374 GPa)。經由耐磨耗實驗評估,結果顯示所有的被覆層耐磨耗能力皆比原材好,也優於熱處理過後的SKD11,其中以WC 粉末之被覆層有最佳的耐磨耗能力,其歸因於WC 粉末之被覆層中幾何形狀複雜的FexWxC(x=2,3)與M3C(M=Fe,Cr,W)所產生的機械固鎖效應,使強化相在磨耗過程中不易脫落或移除。 (二) 分別被覆四種不同陶瓷粉末做為JIS SKD61 模具鋼基材之強化 為了瞭解基材的種類對於被覆層之組成相及機械性質等之影響,在JIS SKD61 模具鋼表面分別被覆上述四種陶瓷粉末後進行被覆層厚度之量測,其同 樣地以WB 粉末為強化來源之被覆層最厚(約6 mm),而TiN 粉末之被覆最薄(約 0.3 mm),然而被覆SiC 粉末與WC 粉末之被覆層厚度相較於SKD11 工具鋼約厚 0.4 mm。經由被覆層組成相之分析得知SiC 粉末之被覆層主要由 Fe8Si2C、 α-Fe+Fe8Si2C 共晶組織、Fe3C+Fe8Si2C 共晶組織與graphite 等相為主,WC 粉末之被覆層中主要以FexWxC(x=2,3)與M7C3(M=Fe, W, Cr)等相為主,WB 粉末之被覆層則以α-Fe 與FeWB 等相為主,最後TiN 粉末之被覆層以TiN、α-Fe 與Fe9.64Ti0.36 等相為主。經維克氏硬度量測後得知,TiN 粉末之被覆層有最高的硬度(約2100-2200 HV),WB 粉末之被覆層硬度最低(約1050-950 HV)。SKD61 之熱影響區與SKD11 之熱影響區不同,SKD61 之熱影響區沒有軟化區產生,經由SEM 觀察發現,其組織為麻田散鐵。利用奈米壓痕器針對被覆層中各組成相進行硬度及彈性係數之量測,其結果顯示WC 粉末之被覆層中的FexWxC(x=2,3)有最高的硬度(約22.1 GPa),而TiN 粉末之被覆層中的TiN 相有最高的彈性係數(375GPa)。經由耐磨耗實驗評估,結果顯示所有的被覆層耐磨耗能力皆比原材好,也優於熱處理過後的SKD61,其中以TiN 粉末之被覆層在低滑度速度條件下有最佳的耐磨耗能力,其歸因於高硬度的TiN 強化相,而在高滑度速度條件下WC粉末之被覆層有最佳的耐磨耗能力,這是因為在高滑度速度時磨耗表面易生成氧化膜,氧化膜產生的裂縫及黏著磨耗使TiN 強化相易於磨耗表面脫落,因此使磨耗量略高於WC 粉末之被覆層。 (三) 藉由氮氣保護氣體與Ti-6Al-4V 鈦合金的高溫化學反應來強化基材 有別於傳統的GTAW 被覆處理,本研究將常用來當作保護氣體的氬氣改變 為氮氣,藉由氮氣與鈦合金的高溫化學反應生成氮化鈦來強化鈦合金基材。經由 不同的被覆參數結果得知以7.2 kJ/cm 的入熱量進行被覆能有最佳的氮化鈦被覆 層,其中包含了最佳的表面粗糙度及最厚的氮化鈦被覆層。經由被覆層組成相之 分析結果指出氮化鈦被覆層中主要以TiN 相及α’-Ti 為主,而熱影響區之顯微組 織為麻田散體。由維克氏硬度量測得知,被覆層硬度為1800 HV,其熱影響區硬 度約為450 HV。利用奈米壓痕器針對被覆層中各組成相進行硬度及彈性係數之 量測,其結果顯示氮化鈦被覆層中的TiN 相硬度為18.16 GPa,彈性係數為227 GPa。經由磨耗試驗評估,氮化鈦被覆層的耐磨耗能力遠優於基材。 | zh_TW |
| dc.description.abstract | In this study, JIS SKD11 tool steel, JIS SKD61 die steel and Ti-6Al-4V titanium alloy were treated by gas tungsten arc welding (GTAW) surface modification. The influences of the mechanical properties and wear resistance of the clad layers were investigated and the following three topics discussed:
1. Cladding the four different ceramic powders on JIS SKD11 tool steel Four different ceramic powders (silicon carbide (SiC), tungsten carbide (WC), tungsten boride (WB) and titanium nitride (TiN)) are clad on the JIS SKD11 tool steel. The X-ray diffraction analyses indicates the existence of [Cr,Fe]7C3+Fe0.905Si0.095 and Fe0.905Si0.095 in the SiC clad layer, FexWxC(x=2,3) and M3C(M=Fe,Cr,W) in the WC clad layer, α-Fe and Fe23B6+M23C6(M=Fe,Cr,W) in the WB clad layer and TiN and α-Fe+Cr1.97Ti1.07 in the TiN clad layer. In addition, the experimental results show the WB clad layer to be the thickest, at about 6 mm, while the TiN clad layer has the highest hardness, about 2200-2300 HV. The nanoindentation technique is used to measure the hardness and elastic modulus of the reinforcements and matrix. According to the experimental results, the Fe23B6+M23C6(M=Fe,Cr,W) phase in the WB clad layer has the highest hardness, of about 21.9 GPa, and the TiN phase in the TiN clad layer has the highest elastic modulus, of about 374 GPa. The wear resistances of the clad layers surpass those of the untreated specimens, even after heat-treatment. The WC clad layer has the best wear resistance, indicating that the wear resistance abilities of the clad layer are obviously affected by the mechanical locking effect of the complex reinforcements. 2. Cladding the four different ceramic powders on JIS SKD61 die steel. In order to understand the influences of the different substrates, four different ceramic powders (SiC, WC, WB and TiN) are clad on the JIS SKD61 tool steel. The X-ray diffraction analyses indicate the existence of Fe8Si2C, α-Fe+Fe8Si2C, Fe3C+Fe8Si2C and graphite in the SiC clad layer, FexWxC(x=2,3) and M7C3(M=Fe, W, Cr) in the WC clad layer, α-Fe and FeWB in the WB clad layer and TiN and Fe9.64Ti0.36 in the TiN clad layer. According to the experimental results, the TiN clad layer has the best wear resistance, because of the TiN phase in the clad layer. However, in the high sliding speed condition, the wear loss of the TiN clad layer is slightly higher than that of the WC clad layer, because the oxides films dominate the wear behavior of the TiN clad layer at the high sliding speed condition in the wear test. 3. Using nitrogen shielding gas to enhance Ti-6Al-4V titanium alloy. In this study, the nitrogen source is changed from a shielding gas of nitrogen. The effects of the processing parameters on the microstructural evolution, mechanical properties and wear behavior in the Ti-6Al-4V surface are presented. Nitrogen gas as the nitrogen source consists primarily of the TiN phase. The average size of the TiN dendrites is affected by the heat input. When 7.2 kJ/cm heat input is used, a complex dendritic microstructure is achieved, and this is attributed to the higher solubility. It is observed that under all the processing parameters used in this investigation, the clad layer thickness increases with increases in the heat input. Moreover, nanoindentation indicates that the TiN phase has an 18.16 GPa hardness and a 227 GPa elastic modulus. During the sliding wear test, the hard TiN phase in the TiN clad layer provides a strengthening effect. Therefore, the wear performance of the TiN clad layer is substantially better than that of the other specimens under the same test conditions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:31:56Z (GMT). No. of bitstreams: 1 ntu-103-D99522010-1.pdf: 18500924 bytes, checksum: 43f86d0c69fab49eacfebe204274a691 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘 要............................................. I
Abstract ........................................ IV 第一章 前 言....................................... 1 第二章 文獻回顧與研究理論簡介......................... 3 2.1 氣體遮護鎢弧銲被覆相關研究回顧.................... 3 2.2 與氣體遮護鎢弧銲被覆相似的被覆方法................. 5 2.3 被覆層中強化相的特性............................ 7 2.4 相關研究提出的理論簡介........................... 8 2.4.1 被覆層的組成及凝固理論......................... 8 2.4.2 被覆層化合物生成理論........................... 9 2.4.3 微結構的強化理論.............................. 9 2.4.4 磨耗理論.................................... 10 2.5 磨耗模型簡介................................... 14 第三章 實驗方法..................................... 16 3.1 實驗流程....................................... 16 3.2 試片製作....................................... 16 3.2.1 基材的製作..................................... 16 3.2.2 預敷被覆陶瓷粉末的方式........................... 17 3.2.3 磨耗試片的製作.................................. 17 3.3 氬銲被覆方法...................................... 17 3.3.1 氬銲被覆參數..................................... 18 3.3.2 氮氣鎢極電弧銲被覆參數............................. 18 3.4 被覆層顯微組織的分析................................. 18 3.5 被覆層機械性質測試................................... 19 3.6 磨耗試驗............................................ 20 3.6.1 磨耗試驗機的校正..................................... 20 3.6.2 磨耗試驗條件...................................... 21 3.6.3 磨耗量之計算..................................... 21 3.6.4 摩擦係數.......................................... 22 3.6.5 磨耗表面的觀察...................................... 23 第四章 結果與討論......................................... 24 4.1 分別被覆四種不同陶瓷粉末來強化JIS SKD11 工具鋼............24 4.1.1 被覆層之基本結構分析與探討.......................... 24 4.1.1.1 被覆粉末對於被覆層厚度之影響........................ 24 4.1.1.2 被覆層之XRD 繞射分析 ............................. 25 4.1.2 被覆層微觀結構分析及其形成機制之探討.................... 25 4.1.2.1 SKD11 工具鋼表面被覆碳化矽陶瓷粉末 .................. 26 4.1.2.2 SKD11 工具鋼表面被覆碳化鎢陶瓷粉末 ................. 28 4.1.2.3 SKD11 工具鋼表面被覆硼化鎢陶瓷粉末 .................. 30 4.1.2.4 SKD11 工具鋼表面被覆氮化鈦陶瓷粉末 ................. 31 4.1.3 SKD11 熱影響區微觀結構及硬度分析探討 .................. 33 4.1.4 被覆層機械性質及耐磨耗能力分析......................... 34 4.1.4.1 被覆層硬度分佈.................................... 35 4.1.4.2 被覆層強化相及基地相機械性質分析...................... 35 4.1.4.3 被覆層耐磨耗能力評估............................... 37 4.1.4.4 被覆層磨耗表面觀察及磨耗機制分析..................... 38 4.2 分別被覆四種不同陶瓷粉末來強化JIS SKD61 模具鋼 ........... 42 4.2.1 被覆層之基本結構分析與探討............................ 42 4.2.1.1 被覆粉末對於被覆層厚度之影響......................... 42 4.2.1.2 被覆層之XRD 繞射分析 .............................. 42 4.2.2 被覆層微觀結構分析及其形成機制之探討.................... 43 4.2.2.1 SKD61 模具鋼表面被覆碳化矽陶瓷粉末.................... 43 4.2.2.2 SKD61 模具鋼表面被覆碳化鎢陶瓷粉末.................... 45 4.2.2.3 SKD61 模具鋼表面被覆硼化鎢陶瓷粉末................... 47 4.2.2.4 SKD61 模具鋼表面被覆氮化鈦陶瓷粉末.................... 48 4.2.3 SKD61 熱影響區微觀結構及硬度分析探討................... 49 4.2.4 被覆層耐磨耗能力及機械性質分析......................... 50 4.2.4.1 被覆層硬度分佈.................................... 50 4.2.4.2 被覆層強化相及基地相機械性質分析...................... 50 4.2.4.3 被覆層耐磨耗能力評估............................... 51 4.2.4.4 被覆層磨耗表面觀察及磨耗機制分析....................... 53 4.3 以氮氣保護氣體與Ti-6Al-4V 鈦合金的高溫氮化反應來強化鈦合金 ... 56 4.3.1 被覆層之基本結構分析與探討........................... 56 4.3.1.1 被覆參數對於被覆層之影響............................ 56 4.3.1.2 氮化被覆層之XRD 繞射分析 ........................... 57 4.3.2 氮化被覆層微觀結構分析及其形成機制之探討............... 57 4.3.3 氮化被覆層耐磨耗能力及機械性質分析...................... 58 4.3.3.1 氮化被覆層硬度分佈........................... 58 4.3.3.2 氮化被覆層強化相及基地相機械性質分析............. 59 4.3.3.3 氮化被覆層耐磨耗能力評估......................... 59 4.3.3.4 氮化被覆層磨耗表面觀察及磨耗機制分析............ 59 4.4 惰性氣體鎢極銲之表面被覆處理參數選擇資料庫............... 61 第五章 結 論......................................... 66 參考文獻............................................. 68 表 錄.............................................. 80 圖 錄............................................ 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 工具鋼 | zh_TW |
| dc.subject | 鈦合金 | zh_TW |
| dc.subject | 顯微結構 | zh_TW |
| dc.subject | 氣體遮護鎢弧銲被覆 | zh_TW |
| dc.subject | 被覆層 | zh_TW |
| dc.subject | 碳化矽 | zh_TW |
| dc.subject | 碳化鎢 | zh_TW |
| dc.subject | 硼化鎢 | zh_TW |
| dc.subject | 氮化鈦 | zh_TW |
| dc.subject | Titanium nitride | en |
| dc.subject | Clad layer | en |
| dc.subject | Microstructure | en |
| dc.subject | Silicon carbide | en |
| dc.subject | Tungsten carbide | en |
| dc.subject | Tungsten boride | en |
| dc.subject | Gas tungsten arc welding | en |
| dc.subject | Tool steel | en |
| dc.subject | Titanium alloy | en |
| dc.title | 利用惰性氣體鎢極銲覆之被覆層微觀結構及磨耗特性研究 | zh_TW |
| dc.title | A Study on Microstructures and Wear Behaviors of Cladding Layer Generated by Gas Tungsten Arc W elding | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 邱六合,陳繁雄,林原慶,黃振賢 | |
| dc.subject.keyword | 氣體遮護鎢弧銲被覆,被覆層,顯微結構,碳化矽,碳化鎢,硼化鎢,氮化鈦,工具鋼,鈦合金, | zh_TW |
| dc.subject.keyword | Gas tungsten arc welding,Clad layer,Microstructure,Silicon carbide,Tungsten carbide,Tungsten boride,Titanium nitride,Tool steel,Titanium alloy, | en |
| dc.relation.page | 179 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 18.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
