請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56953完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊曜宇(E. Y. Chuang) | |
| dc.contributor.author | Hsiu-Chu Lin | en |
| dc.contributor.author | 林修竹 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:31:49Z | - |
| dc.date.available | 2017-08-11 | |
| dc.date.copyright | 2014-08-11 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-06 | |
| dc.identifier.citation | 1. Brugada, P. and J. Brugada, Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol, 1992. 20(6): p. 1391-6.
2. Brugada, R., Sudden death: managing the family, the role of genetics. Heart, 2011. 97(8): p. 676-81. 3. Antzelevitch, C., et al., Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation, 2005. 111(5): p. 659-70. 4. Crotti, L., et al., Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J Am Coll Cardiol, 2012. 60(15): p. 1410-8. 5. Moric, E., et al., The implications of genetic mutations in the sodium channel gene (SCN5A). Europace, 2003. 5(4): p. 325-34. 6. Priori, S.G., et al., Natural history of Brugada syndrome: insights for risk stratification and management. Circulation, 2002. 105(11): p. 1342-7. 7. Bai, R., et al., Yield of genetic screening in inherited cardiac channelopathies: how to prioritize access to genetic testing. Circ Arrhythm Electrophysiol, 2009. 2(1): p. 6-15. 8. Kapplinger, J.D., et al., An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm, 2010. 7(1): p. 33-46. 9. Deschenes, I., et al., Electrophysiological characterization of SCN5A mutations causing long QT (E1784K) and Brugada (R1512W and R1432G) syndromes. Cardiovasc Res, 2000. 46(1): p. 55-65. 10. Hedley, P.L., et al., The genetic basis of long QT and short QT syndromes: a mutation update. Hum Mutat, 2009. 30(11): p. 1486-511. 11. Modell, S.M. and M.H. Lehmann, The long QT syndrome family of cardiac ion channelopathies: a HuGE review. Genet Med, 2006. 8(3): p. 143-55. 12. Roden, D.M., Clinical practice. Long-QT syndrome. N Engl J Med, 2008. 358(2): p. 169-76. 13. Schwartz, P.J., et al., Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 2001. 103(1): p. 89-95. 14. Splawski, I., et al., Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation, 2000. 102(10): p. 1178-85. 15. Zareba, W., et al., Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N Engl J Med, 1998. 339(14): p. 960-5. 16. Balser, J.R., Structure and function of the cardiac sodium channels. Cardiovasc Res, 1999. 42(2): p. 327-38. 17. Gellens, M.E., et al., Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A, 1992. 89(2): p. 554-8. 18. Vatta, S., et al., Human beta defensin 1 gene: six new variants. Hum Mutat, 2000. 15(6): p. 582-3. 19. Grant, A.O., Molecular biology of sodium channels and their role in cardiac arrhythmias. Am J Med, 2001. 110(4): p. 296-305. 20. Wilde, A.A. and R. Brugada, Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac sodium channel. Circ Res, 2011. 108(7): p. 884-97. 21. Amin, A.S., A. Asghari-Roodsari, and H.L. Tan, Cardiac sodium channelopathies. Pflugers Arch, 2010. 460(2): p. 223-37. 22. Wang, Q., et al., SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell, 1995. 80(5): p. 805-11. 23. Chen, Q., et al., Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature, 1998. 392(6673): p. 293-6. 24. R., M., et al., Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008. 455(7216): p. 1061-8. 25. Abecasis, G.R., et al., A map of human genome variation from population-scale sequencing. Nature, 2010. 467(7319): p. 1061-73. 26. Ng, S.B., et al., Massively parallel sequencing and rare disease. Hum Mol Genet, 2010. 19(R2): p. R119-24. 27. Mort, M., et al., In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. Hum Mutat, 2010. 31(3): p. 335-46. 28. Juang, J.M., et al., Utilizing multiple in silico analyses to identify putative causal SCN5A variants in Brugada syndrome. Sci Rep, 2014. 4: p. 3850. 29. A. John Camm, Charles Antzelevitch, and P. Brugada., Clinical Approaches to Tachyarrhythmias Volumn 10 The Brugada Syndrome. 1999, NY: Futura Publishing Company. 30. K. T. Goh, T. C. Chao, and C.H. Chew., Sudden noctural deaths among Thai construction workers in Singapore. The Lancet, 1990: p. May 12;1154. 31. Brugada P and Brugada J, Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter Report. J Am Coll Cardiol, 1992. 20: p. 1391-96. 32. Priori SG, et al., Brugada syndrome and sudden cardiac death in children. Lancet, 2000. 355: p. 808-809. 33. Schwartz, P.J., et al., Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation, 1995. 92(12): p. 3381-6. 34. Marco Alings and Arthur Wilde, 'Brugada' Syndrome Clinical Data and Suggested Pathophysiological Mechanism. Circulation, 1999. 99: p. 666-73. 35. Sommariva, E., et al., Genetics can contribute to the prognosis of Brugada syndrome: a pilot model for risk stratification. Eur J Hum Genet, 2013. 21(9): p. 911-7. 36. Levy-Nissenbaum, E., et al., Genetic analysis of Brugada syndrome in Israel: two novel mutations and possible genetic heterogeneity. Genet Test, 2001. 5(4): p. 331-4. 37. Cordeiro, J.M., et al., Compound heterozygous mutations P336L and I1660V in the human cardiac sodium channel associated with the Brugada syndrome. Circulation, 2006. 114(19): p. 2026-33. 38. Vatta, M., et al., Novel mutations in domain I of SCN5A cause Brugada syndrome. Mol Genet Metab, 2002. 75(4): p. 317-24. 39. Smits, J.P., et al., Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients. J Am Coll Cardiol, 2002. 40(2): p. 350-6. 40. Makiyama, T., et al., High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J Am Coll Cardiol, 2005. 46(11): p. 2100-6. 41. Makita, N., et al., Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm, 2005. 2(10): p. 1128-34. 42. Niimura, H., et al., Genetic analysis of Brugada syndrome in Western Japan: two novel mutations. Circ J, 2004. 68(8): p. 740-6. 43. Yi, S.D., et al., [PCR-based site-directed mutagenesis and recombinant expression plasmid construction of a SCN5A mutation (K317N) identified in a Chinese family with Brugada syndrome]. Di Yi Jun Yi Da Xue Xue Bao, 2003. 23(11): p. 1139-42. 44. Priori, S.G., et al., Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: A prospective evaluation of 52 families. Circulation, 2000. 102(20): p. 2509-15. 45. Keller, D.I., et al., Brugada syndrome and fever: genetic and molecular characterization of patients carrying SCN5A mutations. Cardiovasc Res, 2005. 67(3): p. 510-9. 46. Pfahnl, A.E., et al., A sodium channel pore mutation causing Brugada syndrome. Heart Rhythm, 2007. 4(1): p. 46-53. 47. Vatta, M., et al., Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum Mol Genet, 2002. 11(3): p. 337-45. 48. Takehara, N., et al., A cardiac sodium channel mutation identified in Brugada syndrome associated with atrial standstill. J Intern Med, 2004. 255(1): p. 137-42. 49. Rossenbacker, T., et al., Novel pore mutation in SCN5A manifests as a spectrum of phenotypes ranging from atrial flutter, conduction disease, and Brugada syndrome to sudden cardiac death. Heart Rhythm, 2004. 1(5): p. 610-5. 50. Frustaci, A., et al., Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome. Circulation, 2005. 112(24): p. 3680-7. 51. Itoh, H., et al., A novel missense mutation in the SCN5A gene associated with Brugada syndrome bidirectionally affecting blocking actions of antiarrhythmic drugs. J Cardiovasc Electrophysiol, 2005. 16(5): p. 486-93. 52. Lai, L.P., et al., Denaturing high-performance liquid chromatography screening of the long QT syndrome-related cardiac sodium and potassium channel genes and identification of novel mutations and single nucleotide polymorphisms. J Hum Genet, 2005. 50(9): p. 490-6. 53. Takahata, T., et al., Nucleotide changes in the translated region of SCN5A from Japanese patients with Brugada syndrome and control subjects. Life Sci, 2003. 72(21): p. 2391-9. 54. Priori, S.G., et al., Brugada syndrome and sudden cardiac death in children. Lancet, 2000. 355(9206): p. 808-9. 55. Arnestad, M., et al., Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation, 2007. 115(3): p. 361-7. 56. Keller, D.I., et al., A novel nonsense mutation in the SCN5A gene leads to Brugada syndrome and a silent gene mutation carrier state. Can J Cardiol, 2005. 21(11): p. 925-31. 57. Schulze-Bahr, E., et al., Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum Mutat, 2003. 21(6): p. 651-2. 58. Shin, D.J., et al., A novel mutation in the SCN5A gene is associated with Brugada syndrome. Life Sci, 2007. 80(8): p. 716-24. 59. Shin, D.J., et al., Genetic analysis of the cardiac sodium channel gene SCN5A in Koreans with Brugada syndrome. J Hum Genet, 2004. 49(10): p. 573-8. 60. Itoh, H., et al., Clinical and electrophysiological characteristics of Brugada syndrome caused by a missense mutation in the S5-pore site of SCN5A. J Cardiovasc Electrophysiol, 2005. 16(4): p. 378-83. 61. Bezzina, C., et al., A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res, 1999. 85(12): p. 1206-13. 62. Amin, A.S., et al., Novel Brugada syndrome-causing mutation in ion-conducting pore of cardiac Na+ channel does not affect ion selectivity properties. Acta Physiol Scand, 2005. 185(4): p. 291-301. 63. Akai, J., et al., A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Lett, 2000. 479(1-2): p. 29-34. 64. Hong, K., et al., Cryptic 5' splice site activation in SCN5A associated with Brugada syndrome. J Mol Cell Cardiol, 2005. 38(4): p. 555-60. 65. Rossenbacker, T., et al., Unconventional intronic splice site mutation in SCN5A associates with cardiac sodium channelopathy. J Med Genet, 2005. 42(5): p. e29. 66. Yokoi, H., et al., Double SCN5A mutation underlying asymptomatic Brugada syndrome. Heart Rhythm, 2005. 2(3): p. 285-92. 67. Kyndt, F., et al., Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation, 2001. 104(25): p. 3081-6. 68. Glatter, K.A., et al., Effectiveness of sotalol treatment in symptomatic Brugada syndrome. Am J Cardiol, 2004. 93(10): p. 1320-2. 69. Keller, D.I., et al., A novel SCN5A mutation, F1344S, identified in a patient with Brugada syndrome and fever-induced ventricular fibrillation. Cardiovasc Res, 2006. 70(3): p. 521-9. 70. Calloe, K., et al., Characterization and mechanisms of action of novel NaV1.5 channel mutations associated with Brugada syndrome. Circ Arrhythm Electrophysiol, 2013. 6(1): p. 177-84. 71. Kanters, J.K., et al., Flecainide Provocation Reveals Concealed Brugada Syndrome in a Long QT Syndrome Family With a Novel L1786Q Mutation in SCN5A. Circ J, 2014. 78(5): p. 1136-43. 72. Tarradas, A., et al., A novel missense mutation, I890T, in the pore region of cardiac sodium channel causes Brugada syndrome. PLoS One, 2013. 8(1): p. e53220. 73. Millat, G., et al., Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome. Clin Genet, 2006. 70(3): p. 214-27. 74. Tester, D.J., et al., Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm, 2005. 2(5): p. 507-17. 75. Napolitano, C., et al., Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA, 2005. 294(23): p. 2975-80. 76. Paulussen, A., et al., Mutation analysis in congenital Long QT Syndrome--a case with missense mutations in KCNQ1 and SCN5A. Genet Test, 2003. 7(1): p. 57-61. 77. Choi, G., et al., Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation, 2004. 110(15): p. 2119-24. 78. Wehrens, X.H., et al., A novel mutation L619F in the cardiac Na+ channel SCN5A associated with long-QT syndrome (LQT3): a role for the I-II linker in inactivation gating. Hum Mutat, 2003. 21(5): p. 552. 79. Van Langen, I.M., et al., The use of genotype-phenotype correlations in mutation analysis for the long QT syndrome. J Med Genet, 2003. 40(2): p. 141-5. 80. Schwartz, P.J., et al., A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med, 2000. 343(4): p. 262-7. 81. Ackerman, M.J., et al., Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA, 2001. 286(18): p. 2264-9. 82. Abriel, H., et al., Novel arrhythmogenic mechanism revealed by a long-QT syndrome mutation in the cardiac Na(+) channel. Circ Res, 2001. 88(7): p. 740-5. 83. Wattanasirichaigoon, D., et al., Sodium channel abnormalities are infrequent in patients with long QT syndrome: identification of two novel SCN5A mutations. Am J Med Genet, 1999. 86(5): p. 470-6. 84. Wang, Q., et al., Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet, 1995. 4(9): p. 1603-7. 85. Wedekind, H., et al., De novo mutation in the SCN5A gene associated with early onset of sudden infant death. Circulation, 2001. 104(10): p. 1158-64. 86. Kehl, H.G., et al., Images in cardiovascular medicine. Life-threatening neonatal arrhythmia: successful treatment and confirmation of clinically suspected extreme long QT-syndrome-3. Circulation, 2004. 109(18): p. e205-6. 87. Kambouris, N.G., et al., Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel. Circulation, 1998. 97(7): p. 640-4. 88. Grant, A.O., et al., Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest, 2002. 110(8): p. 1201-9. 89. Keller, D.I., et al., A novel mutation in SCN5A, delQKP 1507-1509, causing long QT syndrome: role of Q1507 residue in sodium channel inactivation. J Mol Cell Cardiol, 2003. 35(12): p. 1513-21. 90. Miller, T.E., et al., Recurrent third-trimester fetal loss and maternal mosaicism for long-QT syndrome. Circulation, 2004. 109(24): p. 3029-34. 91. Shim, S.H., et al., Gene sequencing in neonates and infants with the long QT syndrome. Genet Test, 2005. 9(4): p. 281-4. 92. Chang, C.C., et al., A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovasc Res, 2004. 64(2): p. 268-78. 93. Valdivia, C.R., et al., A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine. Cardiovasc Res, 2002. 55(2): p. 279-89. 94. Rivolta, I., et al., A novel SCN5A mutation associated with long QT-3: altered inactivation kinetics and channel dysfunction. Physiol Genomics, 2002. 10(3): p. 191-7. 95. Lupoglazoff, J.M., et al., Homozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block. Circ Res, 2001. 89(2): p. E16-21. 96. Wei, J., et al., Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation, 1999. 99(24): p. 3165-71. 97. An, R.H., et al., Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha- and beta1-subunits. Circ Res, 1998. 83(2): p. 141-6. 98. Rivolta, I., et al., Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem, 2001. 276(33): p. 30623-30. 99. Makita, N., et al., Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation, 2002. 106(10): p. 1269-74. 100. Benhorin, J., et al., Identification of a new SCN5A mutation, D1840G, associated with the long QT syndrome. Mutations in brief no. 153. Online. Hum Mutat, 1998. 12(1): p. 72. 101. Yang, P., et al., Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation, 2002. 105(16): p. 1943-8. 102. Zhang, Y., et al., The SCN5A mutation A1180V is associated with electrocardiographic features of LQT3. Pediatr Cardiol, 2014. 35(2): p. 295-300. 103. Kapa, S., et al., Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation, 2009. 120(18): p. 1752-60. 104. Choi, Y., et al., Predicting the functional effect of amino acid substitutions and indels. PLoS One, 2012. 7(10): p. e46688. 105. Kumar, P., S. Henikoff, and P.C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc, 2009. 4(7): p. 1073-81. 106. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402. 107. Ramensky, V., P. Bork, and S. Sunyaev, Human non-synonymous SNPs: server and survey. Nucleic Acids Res, 2002. 30(17): p. 3894-900. 108. Davydov, E.V., et al., Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol, 2010. 6(12): p. e1001025. 109. Giudicessi, J.R., et al., Phylogenetic and physicochemical analyses enhance the classification of rare nonsynonymous single nucleotide variants in type 1 and 2 long-QT syndrome. Circ Cardiovasc Genet, 2012. 5(5): p. 519-28. 110. Roach, J.C., et al., Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 2010. 328(5978): p. 636-9. 111. Shy, D., L. Gillet, and H. Abriel, Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model. Biochim Biophys Acta, 2013. 1833(4): p. 886-94. 112. Makita, N., et al., Overlap Between LQT3 and Brugada Syndrome: Clinical Features in a Common Mutation and Underlying Biophysical Mechanisms. Circulation, 2007. 116( II): p. 490. 113. Tateyama, M., et al., Structural effects of an LQT-3 mutation on heart Na+ channel gating. Biophys J, 2004. 86(3): p. 1843-51. 114. Clancy, C.E., M. Tateyama, and R.S. Kass, Insights into the molecular mechanisms of bradycardia-triggered arrhythmias in long QT-3 syndrome. J Clin Invest, 2002. 110(9): p. 1251-62. 115. Gonzalez-Perez, A. and N. Lopez-Bigas, Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet, 2011. 88(4): p. 440-9. 116. Chan, P.A., et al., Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Hum Mutat, 2007. 28(7): p. 683-93. 117. Ng, P.C. and S. Henikoff, Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet, 2006. 7: p. 61-80. 118. Brooks-Wilson, A.R., et al., Germline E-cadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria. J Med Genet, 2004. 41(7): p. 508-17. 119. Zhang, E.Y., et al., Genetic polymorphisms in human proton-dependent dipeptide transporter PEPT1: implications for the functional role of Pro586. J Pharmacol Exp Ther, 2004. 310(2): p. 437-45. 120. Kanetsky, P.A., et al., Assessment of polymorphic variants in the melanocortin-1 receptor gene with cutaneous pigmentation using an evolutionary approach. Cancer Epidemiol Biomarkers Prev, 2004. 13(5): p. 808-19. 121. Cooper, G.M., et al., Single-nucleotide evolutionary constraint scores highlight disease-causing mutations. Nat Methods, 2010. 7(4): p. 250-1. 122. Sunyaev, S., V. Ramensky, and P. Bork, Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet, 2000. 16(5): p. 198-200. 123. Flanagan, S.E., A.M. Patch, and S. Ellard, Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomarkers, 2010. 14(4): p. 533-7. 124. Chun, S. and J.C. Fay, Identification of deleterious mutations within three human genomes. Genome Res, 2009. 19(9): p. 1553-61. 125. Galehdari, H., et al., Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations. Int J Mol Epidemiol Genet, 2013. 4(2): p. 77-85. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56953 | - |
| dc.description.abstract | SCN5A基因是一個重要的鈉離子通道基因,當此基因上出現突變時,容易造成突發性心臟疾病包括布魯格達症候群 (Brugada Syndrome,BrS)以及長Q-T間期症候群 (Long QT Syndrome type 3 LQT3)。此類型的突發性心臟疾病,臨床上常常被醫生忽略,因此無法作出精確的診斷與治療。自SCN5A基因與心臟疾病相關性被研究以來,至今已有上百個SCN5A的基因序列變異位點被發現,但是其潛在的致病機轉及基因型與表現型之間的關係尚不清楚,需要更深入的研究,才能確定新的變異是否會造成疾病。本篇論文的研究目為分析SCN5A基因變異的特性,並嘗試探究SCN5A造成心臟疾病: 布魯格達症候群或長Q-T間期症候群的可能性,並期待透過統計模型分析每個變異位點具有的風險性。
在本篇研究中,共計使用4種演算法來分析基因變異是否會導致疾病,所使用的演算法包括Sorts Intolerant From Tolerant, Protein Variation Effect Analyzer, Polymorphism Phenotyping v2 and Genomic Evolutionary Rate Profiling++。本篇研究的SCN5A相關變異資料是從過去的文獻及發表研究中所收集,其中在布魯格達症候群上有425個突變位點,而在長Q-T間期症候群上則有136個突變位點。我們針對這些位點使用Estimated Predictive Values (EPV)來檢定所有變異的風險,並依據蛋白質結構及基因表現子的結構情形進行EPV區域計算。實驗結果顯示當基因變異位點被3種以上演算法認定為惡性時,可加強EPV所測定風險的能力。舉例來說, 布魯格達症候群 中PFAM-B3701和Na Transmembrane Associate區域之EPV,經過位點篩選後,前者由原來的56%提高到75%,後者則由60%提升至83%。 整體而言,本方法能夠有效地區分病患和正常人發現的基因變異位點,根據篩選結果,可以利用具有差異性的突變位點進一步建立機率模型來預測變異位點之風險值。此外, SCN5A突變位點的結構位置與病患發展成布魯格達症候群和長Q-T間期症候群具有關聯性,數據顯示座落於Transmembrane Domain II (DII)的變異有較高的機率導致布魯格達症候群,而在C-terminus的變異有較高的可能造成長Q-T間期症候群。總結來說,本論文推導的SCN5A基因變異分類模型,結合了演算法以及EPV,將可用於分析SCN5A基因變異的危險性與區分形成布魯格達症候群和長Q-T間期症候群的機率。 | zh_TW |
| dc.description.abstract | SCN5A encodes a cardiac sodium channel. Its mutations are associated with Brugada Syndrome (BrS) and Long QT Syndrome Type 3 (LQT3). Both diseases are often neglected by the clinicians because they are difficult to diagnose. Hundreds of non-synonymous variants have been identified in SCN5A; however, the underlying mechanism and the relationship between the genotype and phenotype remain unclear. A new approach that helps to screen and prioritize identified mutations is beneficial for researchers to identify a novel pathogenic mutation in this high-throughput sequencing era. Therefore, we aim to study and analyze the characteristics of SCN5A variants in order to evaluate the possibility of these mutations developing into BrS or LQT3.
In this study, 4 prediction algorithms were used to predict whether a variant is pathogenic or benign. The algorithms includes: Sorts Intolerant From Tolerant (SIFT), Protein Variation Effect Analyzer (PROVEAN), Polymorphism Phenotyping v2 (PolyPhen2) and Genomic Evolutionary Rate Profiling++ (GERP++). Several variants (BrS N=425, LQT3 N=136) were collected from literatures and published reports. Furthermore, Estimated Predictive Values (EPV) is used to evaluate the frequency of one variant in a rare disease, such as BrS or LQT3. Therefore, for each variant, EPV was calculated and all variants were classified into different groups based on the protein structures and exon information. The results demonstrated that higher prediction performances can be obtained when at least 3 prediction algorithms agreed on pathogenicity. For example, the EPVs increased from 56% to 75% and 60% to 83% in the domains of Pfam-B3701 and Na transmembrane in BrS, respectively. In general, the results showed that the proposed approach was able to discriminate case-derived variants and general-population-derived variants. Based on the filtered variants, a prediction model was developed to evaluate potential risk for each variant. In addition, the associations between the SCN5A domains and the two diseases, BrS and LQT3, were evaluated. Intriguingly, the results showed that a variant in domain II (DII) transmembrane has a higher possibility that can develop into BrS. Similarly, a variant in the C-terminal may have a higher chance turning into LQT3. In conclusion, a probability model that integrates EPV and 4 prediction algorithms was developed in this study in order to classify variants identified in SCN5A and evaluate the chance that such variants may lead to BrS or LQT3. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:31:49Z (GMT). No. of bitstreams: 1 ntu-103-R01945042-1.pdf: 2133894 bytes, checksum: fdfb115457723a4d28dda431a5a2fe5a (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT IV Table of Contents VI List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Brugada Syndrome (BrS) 1 1.2 Long QT3 (LQT3) 1 1.3 SCN5A 2 1.4 Prediction Algorithms 3 1.5 Motivation 4 1.6 Specific Aim 6 Chapter 2 Materials and Methods 8 2.1 Data Collection 9 2.2 Prediction Algorithms 10 2.3 Statistical Analysis 12 Chapter 3 Results 14 3.1 EPVs in BrS and LQT3 Variants 16 3.2 Differentiation of Case- Versus General-Population-Derived Variants by Prediction Algorithms 18 3.3 Enhancement of EPV Analysis by In-silico Algorithms 21 3.4 Variants Distribution in Domain and Exon 29 Chapter 4 Discussion 35 4.1 Functional Analysis of SCN5A Variants 35 4.2 Model Reliability 37 4.3 Characteristics of the Prediction Algorithms 39 4.4 Limitations 43 Chapter 5 Conclusion 46 References 47 Appendix 56 Supplementary Table A1 56 The List of all Variants Collected for BrS 56 The List of all Variants Collected for LQT3 73 | |
| dc.language.iso | en | |
| dc.subject | EPV | zh_TW |
| dc.subject | 電腦生物預測 | zh_TW |
| dc.subject | PROVEAN | zh_TW |
| dc.subject | PolyPhen2 | zh_TW |
| dc.subject | 長Q-T間期症候群 | zh_TW |
| dc.subject | 布魯格達氏症候群 | zh_TW |
| dc.subject | SCN5A | zh_TW |
| dc.subject | SIFT | zh_TW |
| dc.subject | GERP++ | zh_TW |
| dc.subject | GERP++ | en |
| dc.subject | Brugada Syndrome | en |
| dc.subject | Long QT Syndrome Type 3 | en |
| dc.subject | SIFT | en |
| dc.subject | PROVEAN | en |
| dc.subject | PolyPhen2 | en |
| dc.subject | SCN5A | en |
| dc.subject | EPV | en |
| dc.subject | in-silico prediction | en |
| dc.title | 建立 BrS 與 LQT3 中 SCN5A 突變位點之預測模型 | zh_TW |
| dc.title | Developing A Prediction Model for SCN5A Variants in BrS and LQT3 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴亮全(Liang-chuan Lai),蔡孟勳 | |
| dc.subject.keyword | SCN5A,布魯格達氏症候群,長Q-T間期症候群,SIFT,PROVEAN,PolyPhen2,GERP++,EPV,電腦生物預測, | zh_TW |
| dc.subject.keyword | SCN5A,Brugada Syndrome,Long QT Syndrome Type 3,SIFT,PROVEAN,PolyPhen2,GERP++,EPV,in-silico prediction, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
