請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56948
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李永凌(Yungling Leo Lee) | |
dc.contributor.author | Yang-Ching Chen | en |
dc.contributor.author | 陳揚卿 | zh_TW |
dc.date.accessioned | 2021-06-16T06:31:44Z | - |
dc.date.available | 2014-10-20 | |
dc.date.copyright | 2014-10-20 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-06 | |
dc.identifier.citation | 1. de Onis M, Blossner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 2010; 92: 1257-1264.
2. Chen LJ, Fox KR, Haase A, Wang JM. Obesity, fitness and health in Taiwanese children and adolescents. Eur J Clin Nutr 2006; 60: 1367-1375. 3. Leung TF, Wong GW. The Asian side of asthma and allergy. Curr Opin Allergy Clin Immunol 2008; 8: 384-390. 4. Asher MI. Recent perspectives on global epidemiology of asthma in childhood. Allergol Immunopathol (Madr) 2010; 38: 83-87. 5. Chu YT, Chen WY, Wang TN, Tseng HI, Wu JR, Ko YC. Extreme BMI predicts higher asthma prevalence and is associated with lung function impairment in school-aged children. Pediatr Pulmonol 2009; 44: 472-479. 6. Shore SA, Johnston RA. Obesity and asthma. Pharmacol Ther 2006; 110: 83-102. 7. Chinn S, Downs SH, Anto JM, Gerbase MW, Leynaert B, de Marco R, Janson C, Jarvis D, Kunzli N, Sunyer J, Svanes C, Zemp E, Ackermann-Liebrich U, Burney P. Incidence of asthma and net change in symptoms in relation to changes in obesity. Eur Respir J 2006; 28: 763-771. 8. Camargo CA, Jr., Weiss ST, Zhang S, Willett WC, Speizer FE. Prospective study of body mass index, weight change, and risk of adult-onset asthma in women. Arch Intern Med 1999; 159: 2582-2588. 9. Beckett WS, Jacobs DR, Jr., Yu X, Iribarren C, Williams OD. Asthma is associated with weight gain in females but not males, independent of physical activity. Am J Respir Crit Care Med 2001; 164: 2045-2050. 10. Mamun AA, Lawlor DA, Alati R, O'Callaghan MJ, Williams GM, Najman JM. Increasing body mass index from age 5 to 14 years predicts asthma among adolescents: evidence from a birth cohort study. Int J Obes (Lond) 2007; 31: 578-583. 11. Chen Y, Dales R, Tang M, Krewski D. Obesity may increase the incidence of asthma in women but not in men: longitudinal observations from the Canadian National Population Health Surveys. Am J Epidemiol 2002; 155: 191-197. 12. Eneli IU, Skybo T, Camargo CA, Jr. Weight loss and asthma: a systematic review. Thorax 2008; 63: 671-676. 13. Story RE. Asthma and obesity in children. Curr Opin Pediatr 2007; 19: 680-684. 14. Lucas SR, Platts-Mills TA. Physical activity and exercise in asthma: relevance to etiology and treatment. J Allergy Clin Immunol 2005; 115: 928-934. 15. Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. Am J Respir Crit Care Med 2007; 175: 661-666. 16. Lucas SR, Platts-Mills TA. Paediatric asthma and obesity. Paediatr Respir Rev 2006; 7: 233-238. 17. Kilpelainen M, Terho EO, Helenius H, Koskenvuo M. Body mass index and physical activity in relation to asthma and atopic diseases in young adults. Respir Med 2006; 100: 1518-1525. 18. Rasmussen F, Lambrechtsen J, Siersted HC, Hansen HS, Hansen NC. Low physical fitness in childhood is associated with the development of asthma in young adulthood: the Odense schoolchild study. Eur Respir J 2000; 16: 866-870. 19. Strine TW, Balluz LS, Ford ES. The associations between smoking, physical inactivity, obesity, and asthma severity in the general US population. J Asthma 2007; 44: 651-658. 20. Vahlkvist S, Pedersen S. Fitness, daily activity and body composition in children with newly diagnosed, untreated asthma. Allergy 2009; 64: 1649-1655. 21. Flaherman V, Rutherford GW. A meta-analysis of the effect of high weight on asthma. Arch Dis Child 2006; 91: 334-339. 22. Castro-Rodriguez JA, Holberg CJ, Morgan WJ, Wright AL, Martinez FD. Increased incidence of asthmalike symptoms in girls who become overweight or obese during the school years. Am J Respir Crit Care Med 2001; 163: 1344-1349. 23. Mannino DM, Mott J, Ferdinands JM, Camargo CA, Friedman M, Greves HM, Redd SC. Boys with high body masses have an increased risk of developing asthma: findings from the National Longitudinal Survey of Youth (NLSY). Int J Obes (Lond) 2006; 30: 6-13. 24. Hancox RJ, Milne BJ, Poulton R, Taylor DR, Greene JM, McLachlan CR, Cowan JO, Flannery EM, Herbison GP, Sears MR. Sex differences in the relation between body mass index and asthma and atopy in a birth cohort. Am J Respir Crit Care Med 2005; 171: 440-445. 25. Noal RB, Menezes AM, Macedo SE, Dumith SC. Childhood body mass index and risk of asthma in adolescence: a systematic review. Obes Rev 2011; 12: 93-104. 26. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006-1012. 27. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2008-2012. 28. Wells GA SB, O'Connell D. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analysis. [WWW document]. URL http:// www.ohri.ca/programs/clinical_epidemiology/oxford.htm. (accessed March 28, 2005) Date last adapted: August 2012. 29. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-188. 30. Cochran W. The combination of estimates from different experiments. Biometrics 1954; 10: 101-129. 31. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088-1101. 32. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634. 33. Orsini N, Bellocco R, S G. GLST: Stata module for trend estimation of summarized dose-response data. [WWW document]. URL http:// ideas.repec.org/c/boc/bocode/s452001.html. (Access 2011 Aug 23) Date last adapted: August 2012 34. Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002. JAMA 2004; 291: 2847-2850. 35. Punekar YS, Sheikh A. Establishing the incidence and prevalence of clinician-diagnosed allergic conditions in children and adolescents using routinely collected data from general practices. Clin Exp Allergy 2009; 39: 1209-1216. 36. Karlstad O, Nafstad P, Tverdal A, Skurtveit S, Furu K. Prevalence, incidence and persistence of anti-asthma medication use in 2- to 29-year-olds: a nationwide prescription study. Eur J Clin Pharmacol 2010; 66: 399-406. 37. Anderson HR, Pottier AC, Strachan DP. Asthma from birth to age 23: incidence and relation to prior and concurrent atopic disease. Thorax 1992; 47: 537-542. 38. Stein RT, Martinez FD. Asthma phenotypes in childhood: lessons from an epidemiological approach. Paediatr Respir Rev 2004; 5: 155-161. 39. Weiss ST, Gold DR. Gender differences in asthma. Pediatr Pulmonol 1995; 19: 153-155. 40. Nicolai T, Pereszlenyiova-Bliznakova L, Illi S, Reinhardt D, von Mutius E. Longitudinal follow-up of the changing gender ratio in asthma from childhood to adulthood: role of delayed manifestation in girls. Pediatr Allergy Immunol 2003; 14: 280-283. 41. Carey MA, Card JW, Voltz JW, Arbes SJ, Jr., Germolec DR, Korach KS, Zeldin DC. It's all about sex: gender, lung development and lung disease. Trends Endocrinol Metab 2007; 18: 308-313. 42. Vink NM, Postma DS, Schouten JP, Rosmalen JG, Boezen HM. Gender differences in asthma development and remission during transition through puberty: the TRacking Adolescents' Individual Lives Survey (TRAILS) study. J Allergy Clin Immunol 2010; 126: 498-504 e491-496. 43. Fleisher B, Kulovich MV, Hallman M, Gluck L. Lung profile: sex differences in normal pregnancy. Obstet Gynecol 1985; 66: 327-330. 44. Mead J. Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. Am Rev Respir Dis 1980; 121: 339-342. 45. Harik-Khan RI, Wise RA, Fleg JL. The effect of gender on the relationship between body fat distribution and lung function. J Clin Epidemiol 2001; 54: 399-406. 46. Wise RA, Enright PL, Connett JE, Anthonisen NR, Kanner RE, Lindgren P, O'Hara P, Owens GR, Rand CS, Tashkin DP. Effect of weight gain on pulmonary function after smoking cessation in the Lung Health Study. Am J Respir Crit Care Med 1998; 157: 866-872. 47. Chen Y, Horne SL, Dosman JA. Body weight and weight gain related to pulmonary function decline in adults: a six year follow up study. Thorax 1993; 48: 375-380. 48. Collins LC, Hoberty PD, Walker JF, Fletcher EC, Peiris AN. The effect of body fat distribution on pulmonary function tests. Chest 1995; 107: 1298-1302. 49. Lumeng JC, Chervin RD. Epidemiology of pediatric obstructive sleep apnea. Proc Am Thorac Soc 2008; 5: 242-252. 50. Goodwin JL, Vasquez MM, Silva GE, Quan SF. Incidence and remission of sleep-disordered breathing and related symptoms in 6- to 17-year old children--the Tucson Children's Assessment of Sleep Apnea Study. J Pediatr 2010; 157: 57-61. 51. Patterson PE, Harding SM. Gastroesophageal reflux disorders and asthma. Curr Opin Pulm Med 1999; 5: 63-67. 52. Chan CS, Woolcock AJ, Sullivan CE. Nocturnal asthma: role of snoring and obstructive sleep apnea. Am Rev Respir Dis 1988; 137: 1502-1504. 53. Lavie L. Obstructive sleep apnoea syndrome--an oxidative stress disorder. Sleep Med Rev 2003; 7: 35-51. 54. Sulit LG, Storfer-Isser A, Rosen CL, Kirchner HL, Redline S. Associations of obesity, sleep-disordered breathing, and wheezing in children. Am J Respir Crit Care Med 2005; 171: 659-664. 55. Gunnbjornsdottir MI, Omenaas E, Gislason T, Norrman E, Olin AC, Jogi R, Jensen EJ, Lindberg E, Bjornsson E, Franklin K, Janson C, Gulsvik A, Laerum B, Svanes C, Toren K, Tunsater A, Lillienberg L, Gislason D, Blondal T, Bjornsdottir US, Jorundsdottir KB, Talvik R, Forsberg B, Lundback B, Soderberg M, Ledin MC, Boman G, Norback D, Wieslander G, Spetz-Nystrom U, Cashelunge KS, Ryden E. Obesity and nocturnal gastro-oesophageal reflux are related to onset of asthma and respiratory symptoms. Eur Respir J 2004; 24: 116-121. 56. Verhulst SL, Aerts L, Jacobs S, Schrauwen N, Haentjens D, Claes R, Vaerenberg H, Van Gaal LF, De Backer WA, Desager KN. Sleep-disordered breathing, obesity, and airway inflammation in children and adolescents. Chest 2008; 134: 1169-1175. 57. Rastogi D, Canfield SM, Andrade A, Isasi CR, Hall CB, Arye R, Raanan A. Obesity-associated asthma in children- a distinct entity. Chest 2011; 6: 6. 58. Garcia-Mayor RV, Andrade MA, Rios M, Lage M, Dieguez C, Casanueva FF. Serum leptin levels in normal children: relationship to age, gender, body mass index, pituitary-gonadal hormones, and pubertal stage. J Clin Endocrinol Metab 1997; 82: 2849-2855. 59. Quek YW, Sun HL, Ng YY, Lee HS, Yang SF, Ku MS, Lu KH, Sheu JN, Lue KH. Associations of serum leptin with atopic asthma and allergic rhinitis in children. Am J Rhinol Allergy 2010; 24: 354-358. 60. Guler N, Kirerleri E, Ones U, Tamay Z, Salmayenli N, Darendeliler F. Leptin: does it have any role in childhood asthma? J Allergy Clin Immunol 2004; 114: 254-259. 61. Morash BA, Ur E, Wilkinson M. Pituitary leptin gene expression is reduced by neonatal androgenization of female rats. Pituitary 2001; 4: 63-70. 62. Salam MT, Wenten M, Gilliland FD. Endogenous and exogenous sex steroid hormones and asthma and wheeze in young women. J Allergy Clin Immunol 2006; 117: 1001-1007. 63. Yungling Leo Lee Y-CC, Yu-An Chen. Obesity and the Occurrence of Bronchitic Symptoms in Adolescents. Obesity (Silver Spring) 2013 Jan;21(1):E149-535. 64. Tollefsen E, Langhammer A, Romundstad P, Bjermer L, Johnsen R, Holmen TL. Female gender is associated with higher incidence and more stable respiratory symptoms during adolescence. Respir Med 2007; 101: 896-902. 65. Burgess JA, Walters EH, Byrnes GB, Giles GG, Jenkins MA, Abramson MJ, Hopper JL, Dharmage SC. Childhood adiposity predicts adult-onset current asthma in females: a 25-yr prospective study. Eur Respir J 2007; 29: 668-675. 66. Gilliland FD, Berhane K, Islam T, McConnell R, Gauderman WJ, Gilliland SS, Avol E, Peters JM. Obesity and the risk of newly diagnosed asthma in school-age children. Am J Epidemiol 2003; 158: 406-415. 67. Chinn S, Rona RJ. Can the increase in body mass index explain the rising trend in asthma in children? Thorax 2001; 56: 845-850. 68. Berntsen S, Lodrup Carlsen KC, Hageberg R, Aandstad A, Mowinckel P, Anderssen SA, Carlsen KH. Asthma symptoms in rural living Tanzanian children; prevalence and the relation to aerobic fitness and body fat. Allergy 2009; 64: 1166-1171. 69. Schwartz J, Gold D, Dockery DW, Weiss ST, Speizer FE. Predictors of asthma and persistent wheeze in a national sample of children in the United States. Association with social class, perinatal events, and race. Am Rev Respir Dis 1990; 142: 555-562. 70. Irei AV, Takahashi K, Le DSNT, Ha PTN, Hung NTK, Kunii D, Sakai T, Matoba T, Yamamoto S. Obesity is associated with increased risk of allergy in Vietnamese adolescents. Eur J of Clin Nutr 2005; 59: 571-577. 71. Vahlkvist S, Inman MD, Pedersen S. Effect of asthma treatment on fitness, daily activity and body composition in children with asthma. Allergy 2010; 65: 1464-1471. 72. Musaad SMA, Patterson T, Ericksen M, Lindsey M, Dietrich K, Succop P, Khurana Hershey GK. Comparison of anthropometric measures of obesity in childhood allergic asthma: central obesity is most relevant. J Allergy Clin Immunol 2009; 123: 1321-1327.e1312. 73. Forno E, Acosta-Perez E, Brehm JM, Han YY, Alvarez M, Colon-Semidey A, Canino G, Celedon JC. Obesity and adiposity indicators, asthma, and atopy in Puerto Rican children. J Allergy Clin Immunol 2013. 74. Kim C-H, Park HS, Park M, Kim H, Kim C. Optimal cutoffs of percentage body fat for predicting obesity-related cardiovascular disease risk factors in Korean adults. Am J of Clin Nutr 2011; 94: 34-39. 75. Minas M, Papaioannou AI, Tsaroucha A, Daniil Z, Hatzoglou C, Sgantzos M, Gourgoulianis KI, Kostikas K. Body composition in severe refractory asthma: comparison with COPD patients and healthy smokers. PLoS ONE [Electronic Resource] 2010; 5: e13233. 76. Song W-J, Kim S-H, Lim S, Park Y-J, Kim M-H, Lee S-M, Lee S-B, Kim K-W, Jang H-C, Cho S-H, Min K-U, Chang Y-S. Association between obesity and asthma in the elderly population: potential roles of abdominal subcutaneous adiposity and sarcopenia. Ann Allergy, Asthma, & Immunol 2012; 109: 243-248. 77. Dunstan DW, Barr EL, Healy GN, Salmon J, Shaw JE, Balkau B, Magliano DJ, Cameron AJ, Zimmet PZ, Owen N. Television viewing time and mortality: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Circulation 2010; 121: 384-391. 78. Liou YM, Liou T-H, Chang L-C. Obesity among adolescents: sedentary leisure time and sleeping as determinants. J Adv Nurs 2010; 66: 1246-1256. 79. Dunstan DW, Salmon J, Healy GN, Shaw JE, Jolley D, Zimmet PZ, Owen N. Association of television viewing with fasting and 2-h postchallenge plasma glucose levels in adults without diagnosed diabetes. Diabetes Care 2007; 30: 516-522. 80. Mitchell JA, Pate RR, Blair SN. Screen-based sedentary behavior and cardiorespiratory fitness from age 11 to 13. Med Sci Sports Exerc 2012; 44: 1302-1309. 81. Aggio D, Ogunleye AA, Voss C, Sandercock GRH. Temporal relationships between screen-time and physical activity with cardiorespiratory fitness in English schoolchildren: a 2-year longitudinal study. Prev Med 2012; 55: 37-39. 82. Ortega FB, Lee DC, Sui X, Ruiz JR, Cheng YJ, Church TJ, Miller CC, Blair SN. Cardiorespiratory fitness, adiposity, and incident asthma in adults. J Allergy Clin Immunol 2010; 125: 271-273 e271-275. 83. Rey-Lopez JP, Ruiz JR, Vicente-Rodriguez G, Gracia-Marco L, Manios Y, Sjostrom M, De Bourdeaudhuij I, Moreno LA, Group HS. Physical activity does not attenuate the obesity risk of TV viewing in youth. Pediatric Obesity 2012; 7: 240-250. 84. Benet M, Varraso R, Kauffmann F, Romieu I, Anto JM, Clavel-Chapelon F, Garcia-Aymerich J. The effects of regular physical activity on adult-onset asthma incidence in women. Respir Med 2011; 105: 1104-1107. 85. Thomas NE, Williams DR. Inflammatory factors, physical activity, and physical fitness in young people. Scand J Med Sci Sports 2008; 18: 543-556. 86. Plaisance EP, Grandjean PW. Physical activity and high-sensitivity C-reactive protein. Sports Med 2006; 36: 443-458. 87. Pedersen BK, Bruunsgaard H. Possible beneficial role of exercise in modulating low-grade inflammation in the elderly. Scand J Med Sci Sports 2003; 13: 56-62. 88. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol 2005; 98: 1154-1162. 89. Sutherland TJ, Cowan JO, Young S, Goulding A, Grant AM, Williamson A, Brassett K, Herbison GP, Taylor DR. The association between obesity and asthma: interactions between systemic and airway inflammation. Am J Respir Crit Care Med 2008; 178: 469-475. 90. Macfarlane DJ, Lee CC, Ho EY, Chan KL, Chan DT. Reliability and validity of the Chinese version of IPAQ (short, last 7 days). J Sci Med Sport 2007; 10: 45-51. 91. Taylor SJ, Whincup PH, Hindmarsh PC, Lampe F, Odoki K, Cook DG. Performance of a new pubertal self-assessment questionnaire: a preliminary study. Paediatr Perinat Epidemiol 2001; 15: 88-94. 92. Education. Mo. Nationwide Physical Fitness Survey of School Children and Youth. . Ministry of Education, Taipei 2008. 93. Chen W, Chang MH. New growth charts for Taiwanese children and adolescents based on World Health Organization standards and health-related physical fitness. Pediatr Neonatol 2010; 51: 69-79. 94. Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA. Skinfold equations for estimation of body fatness in children and youth. Hum Biol 1988; 60: 709-723. 95. Lee YL, Hwang BF, Chen YA, Chen JM, Wu YF. Pulmonary function and incident bronchitis and asthma in children: a community-based prospective cohort study. PLoS One 2012; 7: e32477. 96. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42: 121-130. 97. Huberman M, Langholz B. Application of the missing-indicator method in matched case-control studies with incomplete data. Am J Epidemiol 1999; 150: 1340-1345. 98. Liu GH, Liang KY. Sample size calculations for studies with correlated observations. Biometrics 1997; 53: 937-947. 99. Rochon J. Application of GEE procedures for sample size calculations in repeated measures experiments. Stat Med 1998; 17: 1643-1658. 100. Chen Y, Rennie D, Cormier Y, Dosman J. Sex specificity of asthma associated with objectively measured body mass index and waist circumference: the Humboldt study. Chest 2005; 128: 3048-3054. 101. Appleton SL, Adams RJ, Wilson DH, Taylor AW, Ruffin RE. Central obesity is associated with nonatopic but not atopic asthma in a representative population sample. J Allergy Clin Immunol 2006; 118: 1284-1291. 102. Kronander UN, Falkenberg M, Zetterstrom O. Prevalence and incidence of asthma related to waist circumference and BMI in a Swedish community sample. Respir Med 2004; 98: 1108-1116. 103. Chrzanowska M, Suder A, Kruszelnicki P. Tracking and risk of abdominal obesity in the adolescence period in children aged 7-15. The Cracow Longitudinal Growth Study. Am J of Hum Biol 2012; 24: 62-67. 104. Musaad SM, Patterson T, Ericksen M, Lindsey M, Dietrich K, Succop P, Khurana Hershey GK. Comparison of anthropometric measures of obesity in childhood allergic asthma: central obesity is most relevant. J Allergy Clin Immunol 2009; 123: 1321-1327 e1312. 105. Irei AV, Takahashi K, Le DSNT, Ha PTN, Hung NTK, Kunii D, Sakai T, Matoba T, Yamamoto S. Obesity is associated with increased risk of allergy in Vietnamese adolescents. Eur J of Clin Nutr 2005; 59: 571-577. 106. Westermann H, Choi TN, Briggs WM, Charlson ME, Mancuso CA. Obesity and exercise habits of asthmatic patients. Ann of Allergy, Asthma, & Immunol 2008; 101: 488-494. 107. Glazebrook C, McPherson AC, Macdonald IA, Swift JA, Ramsay C, Newbould R, Smyth A. Asthma as a barrier to children's physical activity: implications for body mass index and mental health. Pediatrics 2006; 118: 2443-2449. 108. Chiang L-C, Huang J-L, Fu L-S. Physical activity and physical self-concept: comparison between children with and without asthma. Journal of Advanced Nursing 2006; 54: 653-662. 109. Beuther DA, Weiss ST, Sutherland ER. Obesity and asthma. Am J Respir Crit Care Med 2006; 174: 112-119. 110. Sandercock GRH, Ogunleye AA. Screen time and passive school travel as independent predictors of cardiorespiratory fitness in youth. Prev Med 2012; 54: 319-322. 111. Tremblay MS, LeBlanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, Goldfield G, Gorber SC. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J of Behav Nutr & Physical Activity 2011; 8: 98. 112. Vale S, Soares-Miranda L, Santos R, Moreira C, Marques A, Santos P, Teixeira L, Mota J. Influence of cardiorespiratory fitness and parental lifestyle on adolescents' abdominal obesity. Ann of Hum Biol 2011; 38: 531-536. 113. Moliner-Urdiales D, Ruiz JR, Ortega FB, Rey-Lopez JP, Vicente-Rodriguez G, Espana-Romero V, Munguia-Izquierdo D, Castillo MJ, Sjostrom M, Moreno LA. Association of objectively assessed physical activity with total and central body fat in Spanish adolescents; the HELENA Study. Int J Obes (Lond) 2009; 33: 1126-1135. 114. McGuire KA, Ross R. Incidental physical activity and sedentary behavior are not associated with abdominal adipose tissue in inactive adults. Obesity 2012; 20: 576-582. 115. Eijkemans M, Mommers M, de Vries SI, van Buuren S, Stafleu A, Bakker I, Thijs C. Asthmatic symptoms, physical activity, and overweight in young children: a cohort study. Pediatrics 2008; 121: e666-672. 116. Sherriff A, Maitra A, Ness AR, Mattocks C, Riddoch C, Reilly JJ, Paton JY, Henderson AJ. Association of duration of television viewing in early childhood with the subsequent development of asthma. Thorax 2009; 64: 321-325. 117. Pekkarinen E, Vanninen E, Lansimies E, Kokkarinen J, Timonen KL. Relation between body composition, abdominal obesity, and lung function. Clin Physiol Funct Imaging 2012; 32: 83-88. 118. Chen Y, Rennie D, Cormier Y, Dosman JA. Waist circumference associated with pulmonary function in children. Pediatr Pulmonol 2009; 44: 216-221. 119. Chen Y, Rennie D, Cormier YF, Dosman J. Waist circumference is associated with pulmonary function in normal-weight, overweight, and obese subjects. Am J Clin Nutr 2007; 85: 35-39. 120. Ochs-Balcom HM, Grant BJ, Muti P, Sempos CT, Freudenheim JL, Trevisan M, Cassano PA, Iacoviello L, Schunemann HJ. Pulmonary function and abdominal adiposity in the general population. Chest 2006; 129: 853-862. 121. Carey IM, Cook DG, Strachan DP. The effects of adiposity and weight change on forced expiratory volume decline in a longitudinal study of adults. Int J Obes Relat Metab Disord 1999; 23: 979-985. 122. Talma H, Chinapaw MJ, Bakker B, HiraSing RA, Terwee CB, Altenburg TM. Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes Rev 2013; 14: 895-905. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56948 | - |
dc.description.abstract | 本論文包含一篇孩童肥胖造成新發生氣喘的統合分析以及一個關於探討肥胖, 體適能/靜態活動時間與兒童氣喘之間的相關性的臺灣孩童健康長期追蹤研究。統合分析旨在定量孩童肥胖對於氣喘發生的危險性,因著發現孩童肥胖對新發生氣喘的影響達到兩倍以上,接著,我們執行以下兩個研究分別用以比較多種肥胖測量對孩童氣喘的相關性,找出最合適預測孩童氣喘的肥胖指標;結果我們發現,是腹部肥胖與孩童氣喘最有相關性,所以我們透過結構方程式統計模型更進一步探討腹部肥胖,體適能/靜態活動,與氣喘的相關致病機轉,此外,透過結構方程式統計模型驗證肺功能的降低是否為腹部肥胖導致氣喘的機轉。最後再收集第一年無腹部肥胖或氣喘者,計算追蹤兩年的肥胖或氣喘發生率。以驗證結構方程式所發現的肥胖,氣喘,體適能及靜坐時間這因果三角關係。孩童肥胖與氣喘的罹患率在過去二十年來不斷上升,而很多長期追蹤研究均指出肥胖發生在氣喘之前,但少有研究將學童體適能/靜態活動考慮進去,過去關於孩童肥胖對氣喘發生的影響在性別上的差異也有許多報告,但缺少一致性的結論。
研究一: 探討孩童肥胖對於新發生氣喘的危險性:統合分析 我們的研究先藉由統合分析整理現有文獻,目的是要(1)定量孩童肥胖對於氣喘發生的危險性; (2)探討肥胖對氣喘發生的影響在性別上的差異。納入文獻的條件是長期追蹤之孩童世代研究,並有使用年齡性別分類的BMI作為孩童肥胖的定義。追蹤的結果要看新發生的氣喘。經過大型資料庫的系統性文獻回顧,總共有1027個研究被選出,經過細部查閱,發現僅有六篇符合納入條件。經過統合分析,發現體重過重造成新發生的氣喘,相較於不重的孩童,達到1.19倍(95%信賴區間, 1.03-1.37)。若是肥胖孩童比上非肥胖孩童則達到2.02倍(95%信賴區間, 1.16-3.50)。BMI上升對於新發生氣喘達到劑量效應(p for trend, 0.004)。肥胖男孩比肥胖女孩的危險高,達到男孩2.47倍,女孩1.25倍,且男孩的危險性有顯著的劑量效應。性別差異的機轉可能透過肥胖所引起的肺功能降低,肥胖造成的呼吸睡眠障礙,肥胖所引起的賀爾蒙Leptin改變。因此,進一步有關機轉的探討需被用以釐清肥胖造成氣喘的性別差異。 研究二: 比較多種肥胖測量對孩童氣喘的相關性,及體適能/靜態活動在肥胖及氣喘間所扮演的角色 接續統合分析的發現,我們接著比較多種肥胖測量對孩童氣喘的相關性。先前有關孩童肥胖與氣喘之研究多僅使用BMI當作肥胖指標。有用其他肥胖測量的研究如: 腰高比,瘦體組織…等,較為缺乏。我們研究的目的在於(1)比較多種肥胖測量對孩童氣喘的相關性,找出最合適預測孩童氣喘的肥胖指標; (2) 藉由重複測量分析探討體適能/靜態活動在肥胖及氣喘間所扮演的角色 我們自2010年進行的一個具有台灣代表性的世代追蹤研究”台灣孩童健康研究”,在台灣北中南東14個社區收案2,758位10歲學童。自2010到2012年每年透過孩童及其家長追蹤問卷,關心孩童呼吸過敏疾病之健康相關,並且每年到校測量BMI,腰臀圍,皮下脂肪厚度,身體組成分析,體適能及靜態活動(2010,2012年),肺功能。肥胖相關測量均標準化,靜態活動採中文版的國際體能活動量表,體適能由教育部體育司統一以標準程序每年於學校執行,其中因”八百公尺短跑”與肥胖及氣喘最相關,故被我們當做體適能的指標。主要的依變項為自家長問卷獲得的,醫師診斷之氣喘及近一年發作的現行氣喘。統計上我們對於連續重複測量使用Generalized Estimating Equation (GEE),以探討各種肥胖測量對的相關性。並進一步使用GEE探討腹部肥胖,體適能/靜態活動,與氣喘的相關性。結果發現,腹部肥胖與醫師診斷之氣喘及現行氣喘的相關性最大,且能反映出劑量效應。低體適能/高靜態活動與腹部肥胖有關,但與氣喘沒有直接相關。 研究三:透過結構方程模式探討腹部肥胖,體適能/靜態活動,與氣喘的相關機轉,並透過存活分析驗證前後因果關係。透過結構方程模式進一步驗證肺功能的降低是否為腹部肥胖導致氣喘的機轉。 透過結構方程式統計模型,可以用以探索並建立疾病機轉的路徑分析。為了驗證結構方程式所發現的肥胖,氣喘,體適能及靜坐時間這因果三角關係,我們收集第一年無腹部肥胖或氣喘者,計算追蹤兩年的肥胖或氣喘發生率,此存活分析使用SAS PROC LIFEREG進行。 不論用GEE,結構方程式或計算發生率,我們皆一致發現,體適能/靜態活動並不是腹部肥胖到氣喘的中介因子。而是低體適能及高靜坐時間先導致腹部肥胖,進而導致氣喘。體適能及靜坐時間乃是腹部肥胖致氣喘的前導因子。低體適能及高靜坐時間乃是間接地導致氣喘。此外,腹部肥胖乃透過肺功能的降低導致氣喘。 腹部肥胖的相關測量應納入未來預測孩童氣喘的相關危險因子。孩童應被鼓勵增強體適能及減少靜坐時間,以避免腹部肥胖引起的氣喘。 | zh_TW |
dc.description.abstract | The dissertation includes a meta-analysis of childhood obesity in prediction of incident asthma and a cohort study exploring interrelationships between obesity, physical fitness, sedentary time, and childhood asthma. Aim of meta-analysis were to quantify the risk of childhood obesity on incident asthma. The following two studies were to compare various anthropometric measures of obesity in relation to childhood asthma, and to further characterising the interrelations amongst central obesity, physical fitness level, sedentary time, and asthma.
Study I: Childhood Overweight and Obesity Predict the Risk of Incident Asthma: Meta-analysis Aims of our meta-analysis were: (1) to quantify the predictability of childhood overweight and obesity on the risk of incident asthma; (2) to evaluate the gender difference on this relationship. The selection criteria were including prospective cohort pediatric studies which use age and sex-specific BMI as a measure of childhood overweight and the primary outcome of incident asthma. A total of 1027 studies were initially identified through online database searches, and finally 6 studies met the inclusion criteria. The combined result of reported relative risk from the 6 included studies revealed that overweight children conferred increased risks of incident asthma as compared with non-overweight children (relative risk, 1.19; 95% CI, 1.03-1.37). The relationship was further elevated for obesity versus non-obesity (relative risk, 2.02; 95% CI, 1.16-3.50). A dose-responsive of elevated BMI on asthma incidence was observed (p for trend, 0.004). Obese boys had a significantly larger effect than obese girls (relative risk, boys: 2.47; 95% CI, 1.57-3.87; girls: 1.25; 95% CI, 0.51-3.03), with significant dose-dependent effect. Proposed mechanisms of gender difference could be through pulmonary mechanics, sleep disordered breathing, and leptin. Further research might be needed to better understand the exact mechanism of gender difference on the obesity-asthma relationship. Study II: Comparing various different anthropometric measures in relations to asthma and the role of physical fitness/sedentary time in the link between obesity and asthma UAvailable prospective study on obesity and asthma used only body mass index as an indicator of adiposity. Studies using more detailed obesity measurements such as waist to height ratio, or lean body mass are lacking. In 2010, we conducted a nationwide “Taiwan Children Health Study (TCHS) ”, of 2,758 ten-years-old school children in 14 Taiwanese communities. They were followed up annually from 2010-2012. Our annual follow-up items were parent’s and children’s health questionnaires, BMI, abdominal/hip circumference, skin fold thickness, body composition, physical fitness and sedentary time (2010 and 2012), and pulmonary function tests. All anthropometric measurements were standardized. Sedentary time was assessed by Chinese version of the international Physical Activity Questionnaire (IPAQ-C). Physical fitness tests were performed through standardized protocol by our Education bureau in each school during our follow ups survey. Amongst these tests, an 800-metre sprint was used to determine the cardiorespiratory endurance of each child, which was most likely relevant to both obesity and asthma. Childhood asth ma was defined according to active asthma and physician-diagnosed asthma in the parent’s questionnaire. The generalized estimating equation (GEE) was used for three years of repeated measurements to analyse the interrelation amongst obesity, sedentary time, physical fitness level, and asthma. Central obesity is the best predictor for active asthma and physician-diagnosed asthma, with significant dose responsiveness. Low physical fitness levels and high screen time were associated with increased risk of central obesity, but was not significantly related to childhood asthma. Study III: Exploring the interrelationships between central obesity, physical fitness/sedentary time, and asthma in Structual Equation Model (SEM). A structural equation model (SEM) was used to explore the pathogenesis amongst central obesity, physical fitness/sedentary time, and asthma. Asthma incidence was analysed during a 2-year follow-up amongst centrally obese and non-obese groups in baseline non-asthmatic children. Moreover, according to previous literature, one possible biological mechanism from central obesity to asthma could be mediated by poor pulmonary function. Therefore, we also aim to examine the role of pulmonary function between central obesity and childhood asthma. Through three different kinds of statistical analysis, we found that physical fitness/sedentary time were not intermediate factor between central obesity and asthma. In the pathway from central obesity to childhood asthma, physical fitness and sedentary time are leading factors. Physical fitness levels and sedentary time indirectly influence asthma risk. Obesity-related reduction in pulmonary function is a possible mechanism in the pathway from central obesity to asthma. Conclusively, we discovered that incident asthma risk was increased by 20 % in overweight children. Boys, rather than girls suffered from significantly higher risk in the obesity-asthma relationship. Central obesity measures most accurately predict asthma and should be incorporated in childhood asthma risk predictions. Children are encouraged to increase their physical fitness levels and reduce their sedentary time to prevent central-obesity-related asthma. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:31:44Z (GMT). No. of bitstreams: 1 ntu-103-F97846002-1.pdf: 8600495 bytes, checksum: 97677a4bbd61c7ed1a4ed50b66f7a0a9 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 序言 i
中文摘要 ii 英文摘要 v Contents viii List of Tables x List of Figures xii Chapter 1 1 Overview 1 Chapter 2 4 Childhood Overweight and Obesity Predict the Risk of Incident Asthma: Meta-analysis 4 Introduction 4 Methods 5 Results 7 Discussion 9 Chapter 3 26 Comparing Various Different Anthropometric Measures in Relations to Asthma and the role of Physical Fitness/Sedentary Time in the link between Obesity and Asthma 26 Introduction 26 Methods 29 (1) Taiwan Children Health Study 29 (2) Questionnaire of respiratory health, sedentary time, and puberty stage 30 (3) Physical fitness assessment 32 (4) Anthropometric measurements 33 (5) Pulmonary function tests 35 (6) Statistical analysis 36 (7) Sample size estimation 37 Results 38 Discussion 39 Chapter 4 53 Interrelationships between Central Obesity, Physical Fitness/Sedentary Time, and Asthma in Structural Equation Model 53 Introduction 53 Methods 54 (1) Structrual equation model (SEM) 54 (2) Incidence calculation 54 Results 55 Discussion 57 Chapter 5 Conclusions and Implications 69 Chapter 6 Perspectives 71 References 73 Appendix 1. Chinese version of the international Physical Activity Questionnaire (IPAQ-C) 87 Appendix 2. New growth chart for Taiwanese Children 90 Appendix 3. The equations of predicted pulmonary function tests for grade 4 to 6 children 91 Table A1 Predictive equations proposed in this study using age, height, weight, and body mass index variables, grade 4 students 91 Table A2 Predictive equations proposed in this study using age, height, weight, and body mass index variables, grade 5 students 92 Table A3 Predictive equations proposed in this study using age, height, weight, and body mass index variables, grade 6 students 93 Appendix 4. Published papers in Obesity Reviews and AJRCCM 94 | |
dc.language.iso | en | |
dc.title | "探討肥胖,體適能及靜態活動與兒童氣喘之間的相關性:統合分析及臺灣孩童健康長期追蹤研究" | zh_TW |
dc.title | Interrelationship between Obesity, Physical Fitness, Sedentary Time, and Childhood Asthma: meta-analysis and cohort study | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 季瑋珠(Wei-Chu Chie),杜裕康(Yu-Kang Tu),陳保中(Pau-Chung Chen),黃國晉(Kuo-Chin Huang),璩大成(Da-Chen Chu) | |
dc.subject.keyword | 腹部肥胖,體適能,靜坐時間,肺功能,氣喘,發生率,結構方程式, | zh_TW |
dc.subject.keyword | central obesity,physical fitness,sedentary time,pulmonary function tests,asthma,incidence,structural equation modeling, | en |
dc.relation.page | 114 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-06 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 8.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。