請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56917完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許輔(Fuu Sheu) | |
| dc.contributor.author | Chia-Yin Chou | en |
| dc.contributor.author | 周家因 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:31:12Z | - |
| dc.date.available | 2025-07-24 | |
| dc.date.copyright | 2020-09-17 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-24 | |
| dc.identifier.citation | Agranoff, B.W., Eggerer, H., Henning, U., and Lynen, F. 1960. Biosynthesis of terpenes VII. isopentenyl pyrophosphate isomerase. J. Biol. Chem. 235:326-332. Allan, C.M., Awad, A.M., Johnson, J.S., Shirasaki, D.I., Wang, C., Blaby-Haas, C.E., Merchant, S.S., Loo, J.A., and Clarke, C.F. 2015. Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae. J. Biol. Chem. 290:7517-7534. Alvear, M., Jabalquinto, A.M., Eyzaguirre, J., and Cardemil, E. 1982. Purification and characterization of avian liver mevalonate-5-pyrophosphate decarboxylase. Biochemistry 21:4646-4650. Ashby, M.N. and Edwards, P.A. 1990. Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J. Biol. Chem. 265:13157-13164. Barkovich, R.J., Shtanko, A., Shepherd, J.A., Lee, P.T., Myles, D.C., Tzagoloff, A., and Clarke, C.F. 1997. Characterization of the COQ5 gene from Saccharomyces cerevisiae evidence for a C-mythyltransferase in ubiquinone biosynthesis. J. Biol. Chem. 272:9182-9188. Barros, M.H., Johnson, A., Gin, P., Marbois, B.N., Clarke, C.F., and Tzagoloff, A. 2005. The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration. J. Biol. Chem. 280:42627-42635. Bazaes, S., Beytía, E., Jabalquinto, A.M., Solís de Ovando, F., Gómez, I., and Eyzaguirre, J. 1980. Pig liver phosphomevalone kinase. 1. Purification and properties. Biochemistry 19:2300-2304. Berendsen, B.J.A., Wegh, R.S., Meijer, T., and Nielen, M.W.F. 2015. The assessment of selectivity in different quadrupole-orbitrap mass spectrometry acquisition modes. J. Am. Soc. Mass Spectrom. 26:337-346. Beytia, E., Dorsey, J.K., Marr, J., Cleland, W.W., and Porter, J.W. 1970. Purification and mechanism of action of hog liver mevalonic kinase. J. Biol. Chem. 245:5450-5458. Bishayee, A., Ahmed, S., Brankov, N., and Perloff, M. 2011. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci. J. Virtual Libr. 16:980-996. Borchers, A.T., Keen, C.L., and Gershwin, M.E. 2004. Mushrooms, tumors, and immunity: an update. Exp. Biol. Med. 229:393-406. Braus, G.H. 1991. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol. Mol. Biol. Rev. 55:349-370. Chang, T.T. and Chou, W.N. 1995. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol. Res. 99:756-758. Chen, Y.J. 2019. Increase the yield of 4-AAQB in the mycelium of Antrodia cinnamomea with isoprenoid chain precursor and lactonization promotion. Institute of Food Science and Technology at National Taiwan University. Master thesis. Cheng, J.J., Chao, C.H., Chang, P.C., and Lu, M.K. 2016. Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea. Food Hydrocolloids 53:37-45. Cherng, I.H., Chiang, H.C., Cheng, M.C., and Wang, Y. 1995. Three new triterpenoids from Antrodia cinnamomea. J. Nat. Prod. 58:365-371. Chiang, C.C., Huang, T.N., Lin, Y.W., Chen, K.H., and Chiang, B.H. 2013. Enhancement of 4-Acetylantroquinonol B production by supplementation of its precursor during submerged fermentation of Antrodia cinnamomea. J. Agric. Food Chem. 61:9160-9165. Chien, S.C., Chen, M.L., Kuo, H.T., Tsai, Y.C., Lin, B.F., and Kuo, Y.H. 2008. Anti-inflammatory activities of new succinic and maleic derivatives from the fruiting body of Antrodia camphorata. J. Agric. Food Chem. 56:7017-7022. Chou, K.C.C., Wu, H.L., Lin, P.Y., Yang, S.H., Chang, T.L., Sheu, F., Chen, K.H., and Chiang, B.H. 2019. 4-Hydroxybenzoic acid serves as an endogenous ring precursor for antroquinonol biosynthesis in Antrodia cinnamomea. Phytochemistry 161:97-106. Chou, K.C.C., Yang, S.H., Wu, H.L., Lin, P.Y., Chang, T.L., and Sheu, F., Chen, K.H., and Chiang, B.H. 2017. Biosynthesis of antroquinonol and 4-acetylantroquinonol B via a polyketide pathway using orsellinic acid as a ring precursor in Antrodia cinnamomea. J. Agric. Food Chem. 65:74-86. Clarke, C.F., Williams, W., and Teruya, J.H. 1991. Ubiquinone biosynthesis in Saccharomyces cerevisiae. Isolation and sequence of COQ3, the 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase gene. J. Biol. Chem. 266:16636-16644. DeFeyter, R.C. and Pittard, J. 1986. Purification and properties of shikimate kinase II from Escherichia coli K-12. J. Bacteriol. 165:331-333. Do, T.Q., Hsu, A.Y., Jonassen, T., Lee, P.T., and Clarke, C.F. 2001. A defect in coenzyme Q biosynthesis is responsible for the respiratory deficiency in Saccharomyces cerevisiae abc1 mutants. J. Biol. Chem. 276:18161-18168. Durr, I.F. and Rudney, H. 1960. The reduction of beta-hydroxy-beta-methyl-glutaryl coenzyme A to mevalonic acid. J. Biol. Chem. 235:2572-2578. Ferguson, J.J. and Rudney, H. 1959. The Biosynthesis of β-hydroxy-β-methylglutaryl coenzyme A in yeast I. identification and purification of the hydroxymethylglutaryl coenzyme-condesing enzyme. J. Biol. Chem. 234:1072-1075. Gaucher, G.M. and Shepherd, M.G. 1968. Isolation of orsellinic acid synthase. Biochem. Biophys. Res. Commun. 32:664-671. Geethangili, M. and Tzeng, Y.M. 2011. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid. Based Complement. Alternat. Med. 2011:212641. Geris, R. and Simpson, T.J. 2009. Meroterpenoids produced by fungi. Nat. Prod. Rep. 26:1063-1094. Gurudatt, P.S., Priti, V., Shweta, S., Ramesha, B.T., Ravikanth, G., Vasudeva, R., Amna, T., Deepika, S., Ganeshaiah, K.N., Shaanker, R.U., Puri, S., and Qazi, N. 2010. Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Curr. Sci. 98:1006-1010. Hertweck, C. 2009. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed Engl. 48:4688-4716. Hsu, C.S., Chou, H.H., and Fang, J.M. 2015. A short synthesis of (±)-antroquinonol in an unusual scaffold of 4-hydroxy-2-cyclohexenone. Org. Biomol. Chem. 13:5510-5519. Hsu, C.S. and Fang, J.M. 2016. Synthesis of (+)-antroquinonol and analogues by using enantioselective Michael reactions of benzoquinone monoketals. Eur. J. Org. Chem. 22:3809-3816. Hu, Y.D., Zhang, H., Lu, R.Q., Liao, X.R., Zhang, B.B., and Xu, G.R. 2014. Enabling the biosynthesis of antroquinonol in submerged fermentation of Antrodia camphorata. Biochem. Eng. J. 91:157-162. Johnson, A., Gin, P., Marbois, B.N., Hsieh, E.J., Wu, M., Barros, M.H., Clarke, C.F., and Tzagoloff, A. 2005. COQ9, a new gene required for the biosynthesis of coenzyme Q in Saccharomyces cerevisiae. J. Biol. Chem. 280:31397-31404. Kumar, V.B., Yuan, T.C., Liou, J.W., Yang, C.J., Sung, P.J., and Weng, C.F. 2011. Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles. Mutat. Res. Mol. Mech. Mutagen. 707:42-52. Lee, I.H., Huang, R.L., Chen, C.T., Chen, H.C., Hsu, W.C., and Lu, M.K., 2002. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol. Lett. 209:63-67. Lee, T.H., Lee, C.K., Tsou, W.L., Liu, S.Y., Kuo, M.T., and Wen, W.C., 2007. A new cytotoxic agent from solid-state fermented mycelium of Antrodia camphorata. Planta Med. 73:1412-1415. Lee, W.T., Lee, T.H., Cheng, C.H., Chen, K.C., Chen, Y.C., Lin, C.W., 2015. Antroquinonol from Antrodia Camphorata suppresses breast tumor migration/invasion through inhibiting ERK-AP-1 and AKT-NF-κB-dependent MMP-9 and epithelial-mesenchymal transition expressions. Food Chem. Toxicol. 78:33-41. Lester, R.L. and Crane, F.L. 1959. The natural occurrence of coenzyme Q and related compounds. J. Biol. Chem. 234:2169-2175. Lewis, J., Johnson, K.A., and Anderson, K.S. 1999. The catalytic mechanism of EPSP synthase revisited. Biochemistry 38:7372-7379. Liao, P.C., Kuo, D.C., Lin, C.C., Ho, K.C., Lin, T.P., and Hwang, S.Y. 2010. Historical spatial range expansion and a very recent bottleneck of Cinnamomum kanehirae Hay. (Lauraceae) in Taiwan inferred from nuclear genes. BMC Evol. Biol. 10:124. Lin, Y.W. and Chiang, B.H. 2011. 4-acetylantroquinonol B isolated from Antrodia cinnamomea arrests proliferation of human hepatocellular carcinoma HepG2 cell by affecting p53, p21 and p27 levels. J. Agric. Food Chem. 59:8625-8631. Lin, Y.W., Pan, J.H., Liu, R.H., Kuo, Y.H., Sheen, L.Y., and Chiang, B.H. 2010. The 4-acetylantroquinonol B isolated from mycelium of Antrodia cinnamomea inhibits proliferation of hepatoma cells. J. Sci. Food Agric. 90:1739-1744. Løbner-Olesen, A. and Marinus, M.G. 1992. Identification of the gene (aroK) encoding shikimic acid kinase I of Escherichia coli. J. Bacteriol. 174:525-529. Lu, M.C., El-Shazly, M., Wu, T.Y., Du, Y.C., Chang, T.T., Chen, C.F., Hsu, Y.M., Lai, K.H., Chiu, C.P., Chang, F.R., and Wu, Y.C. 2013. Recent research and development of Antrodia cinnamomea. Pharmacol. Ther. 139:124-156. Lu, M.Y.J., Fan, W.L., Wang, W.F., Chen, T., Tang, Y.C., Chu, F.H., Chang, T.T., Wang, S.Y., Li, M., Chen, Y.H., Lin, Z.S., Yang, K.J., Chen, S.M., Teng, Y.C., Lin, Y.L., Shaw, J.F., Wang, T.F., and Li, W.H. 2014. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. Proc. Natl. Acad. Sci. U.S.A. 111:E4743-E4752. Lynen, F., Agranoff, B.W., Eggerer, H., Henning, U., and Möslein, E.M. 1959. γ,γ-Dimethyl-allyl-pyrophosphat und geranyl-pyrophosphat, biologische vorstufen des squalens zur biosynthese der terpene, VI. Angew. Chem. 71:657-663. Marbois, B., Gin, P., Gulmezian, M., and Clarke, C.F. 2009. The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1791:69-75. Marbois, B.N. and Clarke, C.F. 1996. The COQ7 gene encodes a protein in Saccharomyces cerevisiae necessary for ubiquinone biosynthesis. J. Biol. Chem. 271:2995-3004. Meganathan, R. 2001. Ubiquinone biosynthesis in microorganisms. FEMS Microbiol. Lett. 203:131-139. Meng, X., Liang, H., and Luo, L. 2016. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr. Res. 424:30-41. Mituhashi, S. and Davis, B.D. 1954. Aromatic biosynthesis: XII. Conversion of 5-dehydroquinic acid to 5-dehydroshikimic acid by 5-dehydroquinase. Biochim. Biophys. Acta 15:54-61. Nes, W.D. 2011. Biosynthesis of cholesterol and other sterols. Chem. Rev. 111:6423-6451. Ozeir, M., Mühlenhoff, U., Webert, H., Lill, R., Fontecave, M., and Pierrel, F. 2011. Coenzyme Q biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency. Chem. Biol. 18:1134-1142. Payet, L.A., Leroux, M., Willison, J.C., Kihara, A., Pelosi, L., and Pierrel, F. 2016. Mechanistic details of rarly steps in coenzyme Q biosynthesis pathway in yeast. Cell Chem. Biol. 23:1241-1250. Phuong, D.T., Ma, C.-M., Hattori, M., and Jin, J.S. 2009. Inhibitory effects of antrodins A–E from Antrodia cinnamomea and their metabolites on hepatitis C virus protease. Phytother. Res. 23:582-584. Pu, X., Qu, X., Chen, F., Bao, J., Zhang, G., and Luo, Y. 2013. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl. Microbiol. Biotechnol. 97:9365-9375. Shen, B. 2003. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7:285-295. Srinivasan, P.R., Rothschild, J., and Sprinson, D.B. 1963. The enzymic conversion of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate to 5-dehydroquinate. J. Biol. Chem. 238:3176-3182. Srinivasan, P.R. and Sprinson, D.B. 1959. 2-Keto-3-deoxy-D-arabo-heptonic acid 7-phosphate synthetase. J. Biol. Chem. 234:716-722. Sulake, R.S. and Chen, C. 2015. Total synthesis of (+)-antroquinonol and (+)-antroquinonol D. Org. Lett. 17:1138-1141. Sulake, R.S., Jiang, Y.F., Lin, H.H., and Chen, C. 2014. Total synthesis of (±)-antroquinonol D. J. Org. Chem. 79:10820-10828. Sulake, R.S., Lin, H.H., Hsu, C.Y., Weng, C.F., and Chen, C. 2015. Synthesis of (+)-antroquinonol: an antihyperglycemic agent. J. Org. Chem. 80:6044-6051. Villaume, M., Sella, E., Saul, G., Borzilleri, R., Fargnoli, J., Johnston, K., Zhang, H., Fereshteh, M., Dhar, T., and Baran, P. 2015. Antroquinonol A: scalable synthesis and preclinical biology of a phase 2 drug candidate. ACS Cent. Sci. 2:27-31. Wang, L.C., Wang, S.E., Wang, J.J., Tsai, T.Y., Lin, C.H., Pan, T.M., and Lee, C.L. 2012. In vitro and in vivo comparisons of the effects of the fruiting body and mycelium of Antrodia camphorata against amyloid β-protein-induced neurotoxicity and memory impairment. Appl. Microbiol. Biotechnol. 94:1505-1519. Wang, S.C., Lee, T.H., Hsu, C.H., Chang, Y.J., Chang, M.S., Wang, Y.C., Ho, Y.S., Wen, W.C., and Lin, R.K. 2014. Antroquinonol D, isolated from Antrodia camphorata, with DNA demethylation and anticancer potential. J. Agric. Food Chem. 62:5625-5635. Wang, X., Du, C., Hong, B., and Lei, X. 2019. Total synthesis of (±)-antroquinonol. Org. Biomol. Chem. 17:1754-1757. Wu, M.D., Cheng, M.J., Wang, B.C., Yech, Y.J., Lai, J.T., Kuo, Y.H., Yuan, G.F., and Chen, I.S. 2008. Maleimide and maleic anhydride derivatives from the mycelia of Antrodia cinnamomea and their nitric oxide inhibitory activities in macrophages. J. Nat. Prod. 71:1258-1261. Yang, S.H., Lin, Y.W., and Chiang, B.H. 2017. Biosynthesis of 4-acetylantroquinonol B in Antrodia cinnamomea via a pathway related to coenzyme Q synthesis. Biochem. Eng. J. 117:23-29. Yang, S.S., Wang, G.J., Wang, S.Y., Lin, Y.Y., Kuo, Y.H., and Lee, T.H. 2009. New constituents with iNOS inhibitory activity from mycelium of Antrodia camphorata. Planta Med. 75:512-516. Yazaki, K., Sasaki, K., and Tsurumaru, Y. 2009. Prenylation of aromatic compounds, a key diversification of plantsecondary metabolites. Phytochemistry 70:1739-1745. Yen, I.C., Lee, S.Y., Lin, K.T., Lai, F.Y., Kuo, M.T., and Chang, W.L. 2017. In vitro anticancer activity and structural characterization of ubiquinones from Antrodia cinnamomea mycelium. Molecules 22:747. Yen, I.C., Yao, C.W., Kuo, M.T., Chao, C.L., Pai, C.Y., and Chang, W.L. 2015. Anti-cancer agents derived from solid-state fermented Antrodia camphorata mycelium. Fitoterapia 102:115-119. Yu, C.C., Chiang, P.C., Lu, P.H., Kuo, M.T., Wen, W.C., Chen, P., and Guh, J.H. 2012. Antroquinonol, a natural ubiquinone derivative, induces a cross talk between apoptosis, autophagy and senescence in human pancreatic carcinoma cells. J. Nutr. Biochem. 23:900-907. Yu, P.W., Chang, Y.C., Liou, R.F., Lee, T.H., and Tzean, S.S. 2016. pks63787, a polyketide synthase gene responsible for the biosynthesis of benzenoids in the medicinal mushroom Antrodia cinnamomea. J. Nat. Prod. 79:1485-1491. Yu, P.W., Cho, T.Y., Liou, R.F., Tzean, S.S., and Lee, T.H. 2017. Identification of the orsellinic acid synthase PKS63787 for the biosynthesis of antroquinonols in Antrodia cinnamomea. Appl. Microbiol. Biotechnol. 101:4701-4711. Zhang, B.B., Guan, Y.Y., Hu, P.F., Chen, L., Xu, G.R., Liu, L., and Cheung, P.C.K. 2019. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Crit. Rev. Biotechnol. 39:541-554. Zhang, B.B., Hu, P.F., Huang, J., Hu, Y.D., Chen, L., and Xu, G.R., 2017. Current advances on the structure, bioactivity, synthesis, and metabolic regulation of novel ubiquinone derivatives in the edible and medicinal mushroom Antrodia cinnamomea. J. Agric. Food Chem. 65:10395-10405. Zhang, D., Shrestha, B., Li, Z., and Tan, T. 2007a. Ubiquinone-10 production using Agrobacterium tumefaciens dps gene in Escherichia coli by coexpression system. Mol. Biotechnol. 35:1-14. Zhang, D., Shrestha, B., Niu, W., Tian, P., and Tan, T., 2007b. Phenotypes and fed-batch fermentation of ubiquinone-overproducing fission yeast using ppt1 gene. J. Biotechnol. 128:120-131. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56917 | - |
| dc.description.abstract | 泛醌 (coenzyme Q3, CoQ3) 類緣物 (analogues) 為牛樟芝 (Antrodia cinnamomea) 中一類具生理活性的化合物,antroquinonol (AQ) 與 4-acetylantroquinonol B (4-AAQB) 兩種泛醌類緣物之生合成途徑,已被證實與泛醌的生合成途徑相似。因此,參與泛醌生合成途徑的 COQ 蛋白可能具有調節泛醌類緣物產量之潛力。本研究欲分析參與 CoQ 生合成之酵素基因表現量與泛醌類緣物產量之間的關聯性,找出對其產量具有關鍵影響之基因。為獲得牛樟芝 COQ 蛋白之核苷酸序列,本研究以次世代定序進行牛樟芝轉錄體分析,並於全新組裝 (de novo assembly) 後得到 48,653 條鄰接序列 (contig),可對應到 8,034 個特定基因 (unigene),其中共有 15 個特定基因註解到 COQ 蛋白,挑選其中 8 個可能編碼 COQ 蛋白的特定基因,包含 COQ2 異戊烯基轉移酶 (polyprenyltransferase)、COQ3 O-甲基轉移酶 (O-methyltransferase)、COQ5 C-甲基轉移酶 (C-methyltransferase)、COQ6 單加氧酶 (monooxygenase)、COQ7 單加氧酶 (monooxygenase),於後續實驗中分析其基因表現量。將牛樟芝液態培養 7、10、13、16、19、22、25、28 天後,收集菌絲體,將其乙醇萃取液以液相層析串聯質譜儀 (liquid chromatography-tandem mass spectrometry, LC-MS/MS) 進行泛醌類緣物定量,並以即時聚合酶連鎖反應 (real-time polymerase chain reaction) 分析 8 個 COQ 蛋白之基因表現量。關聯性分析結果顯示,特定基因 AC2588 (COQ2-4) 與泛醌類緣物產量有較高的相關性,具有調節泛醌類緣物產量的潛力,其轉譯後之蛋白可能為聚異戊二烯轉移酶 (EC 2.5.1.39)。本研究根據轉錄體定序結果,提出 AC2588 蛋白質編碼序列 (protein-coding sequence) 與對應之胺基酸序列。未來可就本研究提出之序列,進一步探討其蛋白質功能與酵素催化活性,以期後續能應用於提升牛樟芝泛醌類緣物產量。 | zh_TW |
| dc.description.abstract | Coenzyme Q3 (CoQ3) analogues are a group of bioactive compounds in Antrodia cinnamomea. Most of CoQ3 analogues exhibited excellent anti-cancer effects, especially antroquinonol (AQ) and 4-acetylantroquinonol B (4-AAQB). Recently, AQ and 4-AAQB were proved to have similar biosynthetic pathways with that of CoQ. Therefore, COQ proteins involved in the biosynthesis of CoQ might have the potential in regulating the yields of CoQ3 analogues in A. cinnamomea. To obtain the nucleotide sequences of COQ proteins from A. cinnamomea, a transcriptome database containing 48,653 contigs corresponding to 8,034 unigenes was established. There were fifteen unigenes annotated to COQ proteins, and eight of them annotated to COQ2 (polyprenyltransferase), COQ3 (O-methyltransferase), COQ5 (C-methyltransferase), COQ6 (monooxygenase), and COQ7 (monooxygenase) were selected for subsequent analysis. The mycelium of A. cinnamomea sampled at eight time points during submerged fermentation was collected. Quantification of CoQ3 analogues from mycelium was carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene expression levels of selected COQ proteins were analyzed by real-time polymerase chain reaction. After correlation analysis between gene expression profile and the contents of CoQ3 analogues, unigene AC2588 (COQ2-4) that might encode a polyprenyltransferase (EC 2.5.1.39) was found the most correlated to the contents of CoQ3 analogues and might be potential to regulate the yields of CoQ3 analogues in A. cinnamomea. The open-reading frame and deduced amino acid sequence for COQ2-4 were proposed in this study. It was recommended that further studies could be performed to investigate the protein function and catalytic activity of COQ2-4. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:31:12Z (GMT). No. of bitstreams: 1 U0001-2307202014064400.pdf: 8120201 bytes, checksum: 520bc26065a0811785751a0aa3e3ebcd (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 I 誌謝 II 摘要 III ABSTRACT IV CONTENT V LIST OF TABLES VIII LIST OF FIGURES IX ABBREVIATION LIST XI CHAPTER 1 INTRODUCTION 1 1.1 Introduction of Antrodia cinnamomea 1 1.2 Bioactive compounds in A. cinnamomea 2 1.2.1 Triterpenoids 2 1.2.2 Polysaccharides 2 1.2.3 Succinic and maleic acid derivatives 3 1.2.4 CoQ3 analogues 3 1.3 Methods to obtain CoQ3 analogues in A. cinnamomea 5 1.3.1 Chemical synthesis of CoQ3 analogues 5 1.3.2 Biosynthesis of CoQ3 analogues 6 1.3.3 Biosynthesis of CoQ3 analogues from MVA and shikimate pathways 7 1.3.4 Biosynthesis of CoQ3 analogues from MVA and polyketide pathways 8 1.4 Enzymes involved in the biosynthesis of ubiquinone 9 1.4.1 Enzymes involved in MVA pathway 9 1.4.2 Enzymes involved in shikimate pathway 10 1.4.3 Enzymes involved in polyketide pathway 10 1.4.4 Enzymes involved in ubiquinone biosynthesis 11 1.5 The aim of this study 12 CHAPTER 2 MATERIALS AND METHODS 14 2.1 Chemicals and reagents 14 2.2 Fungi strains and cultivation 14 2.3 Submerged fermentation of A. cinnamomea 14 2.4 Total RNA purification for transcriptome sequencing and qPCR 15 2.5 Next generation sequencing (NGS) and transcriptome assembly 15 2.6 Functional annotation of de novo assembled contigs 16 2.7 Gene expression analysis by qPCR 16 2.8 Ethanol extract of mycelium of A. cinnamomea 17 2.9 CoQ3 analogues quantification using LC-MS/MS 17 2.10 Statistical analysis 19 Chapter 3 RESULTS 20 3.1 Sequencing and assembly of A. cinnamomea transcriptome 20 3.2 A. cinnamomea transcriptome annotation and gene identification 20 3.3 Correlation between gene expression profile and ubiquinone metabolites’ contents of submerged-cultured A. cinnamomea 35716 22 3.4 Correlation between gene expression profile and ubiquinone metabolites’ contents of submerged-cultured A. cinnamomea 35716 with acidification treatment 23 3.5 Correlation between gene expression profile and ubiquinone metabolites’ contents of submerged-cultured A. cinnamomea 78714 25 3.6 The open reading frame and deduced amino acid sequence of AC2588 (COQ2-4) from A. cinnamomea 26 Chapter 4 DISCUSSION 28 4.1 Transcriptomic analysis of A. cinnamomea 28 4.2 The CoQ3 analogues detected in ethanol extract of A. cinnamomea mycelium 29 4.3 The fluctuation in contents of CoQ3 analogues extracted from the mycelium of A. cinnamomea 29 4.4 The effect of broth acidification on the contents of CoQ3 analogues in A. cinnamomea 30 4.5 The contents of CoQ3 analogues in the mycelium of A. cinnamomea 78714 31 4.6 The impact of polyprenyltransferase gene expression levels on CoQ contents 32 4.7 Conclusion 33 REFERENCE 34 TABLES 44 FIGURES 51 APPENDIX 66 | |
| dc.language.iso | en | |
| dc.subject | 泛醌類緣物 | zh_TW |
| dc.subject | 牛樟芝 | zh_TW |
| dc.subject | 4-acetylantroquinonol B | zh_TW |
| dc.subject | antroquinonol | zh_TW |
| dc.subject | 聚異戊二烯轉移酶 | zh_TW |
| dc.subject | CoQ3 analogues | en |
| dc.subject | 4-acetylantroquinonol B | en |
| dc.subject | polyprenyltransferase | en |
| dc.subject | Antrodia cinnamomea | en |
| dc.subject | antroquinonol | en |
| dc.title | 以分析基因表現與代謝物產量之關聯性探討牛樟芝 Coenzyme Q3 類緣物生合成之候選基因 | zh_TW |
| dc.title | Exploring the Candidate Genes for the Biosynthesis of Coenzyme Q3 Analogues in Antrodia cinnamomea using Correlation Analysis between Gene Expression and Metabolite Contents | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔣丙煌,蘇南維,繆希椿,周繼中 | |
| dc.subject.keyword | 牛樟芝,泛醌類緣物,antroquinonol,4-acetylantroquinonol B,聚異戊二烯轉移酶, | zh_TW |
| dc.subject.keyword | Antrodia cinnamomea,CoQ3 analogues,antroquinonol,4-acetylantroquinonol B,polyprenyltransferase, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU202001779 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-24 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2307202014064400.pdf 未授權公開取用 | 7.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
