Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56907
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋
dc.contributor.authorFinella Leeen
dc.contributor.author李韋諭zh_TW
dc.date.accessioned2021-06-16T06:31:04Z-
dc.date.available2016-08-12
dc.date.copyright2014-08-12
dc.date.issued2014
dc.date.submitted2014-08-07
dc.identifier.citation[1] M. A. Khan, J. Van Hove, J. Kuznia, and D. Olson, 'High electron mobility GaN/AlxGa1− xN heterostructures grown by low‐pressure metalorganic chemical vapor deposition,' Applied physics letters, vol. 58, pp. 2408-2410, 1991.
[2] M. A. Khan, J. Kuznia, A. Bhattarai, and D. Olson, 'Metal semiconductor field effect transistor based on single crystal GaN,' Applied Physics Letters, vol. 62, pp. 1786-1787, 1993.
[3] S. Nakamura, M. Senoh, and T. Mukai, 'P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,' Japanese Journal of Applied Physics Part 2 Letters, vol. 32, pp. L8-L8, 1993.
[4] P. Hower, S. Pendharkar, and T. Efland, 'Current status and future trends in silicon power devices,' in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 13.1. 1-13.1. 4.
[5] S. Ookubo, Nikkkei Electronics Asis, “More than Just Light: GaN Drivers Equipment Evolution,” August 2006, http://techon.nikkeibp.co.jp/article/HONSHI/20060803/119880/
[6] Md. Tanvir Hasan, 'Mechanism and Suppression of Current Collapse in AlGaN/GaN High Electron Mobility Transistors,' Ph.D. dissertation, University of Fukui, Fukui, Japan, 2013
[7] T. Oka and T. Nozawa, 'AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications,' IEEE Electron Devic. Lett., vol. 29, pp. 668-670, Jul. 2008.
[8] Y.-C. Lee, C.-Y. Wang, T.-T. Kao, and S.-C. Shen, 'Threshold Voltage Control of Recessed-Gate III-N HFETs Using an Electrode-less Wet Etching Technique,' in CS MANTECH, Apr. 2012.
[9] W. Chen, K.-Y. Wong, and K. J. Chen, 'Monolithic integration of lateral field-effect rectifier with normally-off HEMT for GaN-on-Si switch-mode power supply converters,' in Int. El. Devices Meet. (IEDM), Dec. 2008, pp. 1-4.
[10] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, 'High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment,' IEEE Electron Devic. Lett., vol. 26, pp. 435-437, Jul. 2005.
[11] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka and D. Ueda, 'Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation,' IEEE T. Electron Dev., vol. 54, pp. 3393-3399, Dec. 2007.
[12] O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Wurfl, 'Normally-off AlGaN/GaN HFET with p-type GaN Gate and AlGaN buffer,' in Int. Sym. Pow. Semicond., June 2010, pp. 347-350.
[13] O. Hilt, F. Brunner, E. Cho, A. Knauer, E. Bahat-Treidel, and J. Wurfl, 'Normally-off high-voltage p-GaN gate GaN HFET with carbon-doped buffer,' in Int. Sym. Pow. Semicond., May 2011, pp. 239-242.
[14] S. L. Selvaraj, K. Nagai, and T. Egawa, 'MOCVD grown normally-OFF type AlGaN/GaN HEMTs on 4 inch Si using p-InGaN cap layer with high breakdown,' in Devic. Res. Conf., June 2010, pp. 135-136.
[15] I. Hwang, H. Choi, J. Lee, H. S. Choi, J. Kim, J. Ha, C.-Y. Um, S.-K. Hwang, J. Oh, J.-Y. Kim, J. K. Shin, Y. Park, U. Chung, I.-K. Yoo, and K. Kim, '1.6 kV, 2.9 mΩ cm2 normally-off p-GaN HEMT device,' in Int. Sym. Pow. Semicond., June 2012, pp. 41-44.
[16] H. Chonan, T. Ide, X. Q. Shen, and M. Shimizu, 'Effect of hole injection in AlGaN/GaN HEMT with GIT structure by numerical simulation,' Phys. Status Solidi C, vol. 9, pp. 847-850, Jan. 2012.
[17] K. Ota, K. Endo, Y. Okamoto, Y. Ando, H. Miyamoto, and H. Shimawaki, 'A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique,' in Int. El. Devices Meet. (IEDM), Dec. 2009, pp. 1-4.
[18] M. Ishida, M. Kuroda, T. Ueda, and T. Tanaka, 'Nonpolar AlGaN/GaN HFETs with a normally off operation,' Semicond. Sci. Tech., vol. 27, p. 024019, Jan. 2012.
[19] Y. Chang, W. Chang, H. Chiu, L. Tung, C. Lee, K. Shiu, M. Hong, J. Kwo, J. Hong, and C. Tsai, 'Inversion-channel GaN MOSFET using atomic-layer-deposited Al2O3 as gate dielectric,' Appl. Phys. Lett., vol. 93, pp. 053504-053504-3, Aug. 2008.
[20] T. Hashizume, S. Anantathanasarn, N. Negoro, E. Sano, H. Hasegawa, K. Kumakura, and T. Makimoto, 'Al2O3 insulated-gate structure for AlGaN/GaN heterostructure field effect transistors having thin AlGaN barrier layers,' Jpn. J. Appl. Phys. 2, vol. 43, pp. L777-L779, Jun. 2004.
[21] I. B. Rowena, S. L. Selvaraj, and T. Egawa, 'Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si,' IEEE Electron Devic. Lett., vol. 32, pp. 1534-1536, Nov. 2011.
[22] Hideki Hasegawa, Takanori Inagaki, Shinya Ootomo, and Tamotsu Hashizume., 'Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors,' J. Vac. Sci. Technol. B 21, 1844 (2003).
[23] S. HAŁAS, '100 years of work function,' Materials Science-Poland, Vol. 24., No. 4, 2006.
[24] Tamotsu Kimura, Ryoji Shigemasa, Tomoyuki Ohshima, and Seiji Nishi., 'Shift in Threshold Voltage and Schottky Barrier Height of Molybdenum Gate Gallium Arsenide Field Effect Transistors after High Forward Gate Current Test,' Jpn. J. Appl. Phys., vol. 35, pp. L883-L886, Jul. 1996.
[25] Z. Z. Bandic and Thomas J. Watson, 'Electron diffusion length and lifetime in p-type GaN,' Appl. Phys. Lett., vol. 77, pp. 3276-3278, Nov. 1998.
[26] Injun Hwang, Jongseob Kim, Hyuk Soon Choi, Hyoji Choi, Jaewon Lee, Kyung Yeon Kim, Jong-Bong Park, Jae Cheol Lee, Jongbong Ha, Jaejoon Oh, Jaikwang Shin, and U-In Chung, 'p-GaN Gate HEMTs with Tungsten Gate Metal for High Threshold Voltage and Low Gate Current, ' IEEE Electron Devic. Lett., vol. 34, pp. 202-204, Feb. 2013.
[27] Stephen L. Colino, and Robert A. Beach, 'Fundamentals of Gallium Nitride Power Transistors,' 2009. www.EPC-CO.com
[28] Lloyd P. Hunter, Handbook of Semiconductor Electronics. New York: McGraw-Hill, 1956.
[29] G. Koley, V. Tilak, L. F. Eastman, and M. G. Spencer, “Slow transients observed in AlGaN HFETs: Effects of SiNx passivation and UV illumination,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 886–893, Apr. 2003.
[30] R. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, B. Hughes, and K. Boutros, “1200-V normally off GaN-on-Si field-effect transistors with low dynamic on-resistance,” IEEE Electron Device Lett., vol. 32, no. 5, pp. 632–634, May 2011.
[31] B.M. Green, K.K. Chu, E.M. Chumbes, J.A. Smart, J.R. Shealy and L.F. Eastman, “The effect of surface passivation on the microwave characteristics of un-doped AlGaN/GaN HEMTs” IEEE Electron. Device Lett., Vol.21, No.6, pp.268-270, Jun. 2000.
[32] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo and Y. Sano, ”Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride”, Appl. Phys. Lett., Vol. 84, No. 4, pp.613-615, Jan . 2004.
[33] P. Javorka, J. Bernat, A. Fox, M. Marso, H. Luth and P. Kordos, “Influence of SiO2 and Si3N4 passivation on AlGaN/GaN/Si HEMT performance”, IEEE Electron. Device Lett., Vol. 39, No. 15, pp.1155-1157, Jul. 2003.
[34] R. Vetury, N. Q. Shang, S. Keller and U.K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs”, IEEE Trans. Electron Devices, Vol. 48, No. 3, pp. 560-566, Mar. 2001.
[35] M.-W. Ha, S. -C. Le, J. -H. Park, J. -C. Her, K. -S. Seo and M.-K. Han, “Silicon dioxide passivation of AlGaN/GaN HEMTs for high breakdown voltage”, Proc. of 18th Int. Symp. on Power Semicon. Devices & IC’s, pp.1666098, June 4-8, 2006.
[36] A.M. Wells, M.J. Uren, R.S. Balmer, K.P. Hilton, T. Martin and M. Missous, “Direct demonstration of the 'virtual gate' mechanism for current collapse in AlGaN/GaN HFETs”, Solid-state Electron., Vol. 49, No. 2, pp.279-282, Feb. 2005.
[37] S. Arulkumaran, T. Egawa, H. Ishikawa and T. Jimbo, “Comparative study of drain-current collapse in AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC”, Appl. Phys. Lett., Vol. 81, No. 16, pp.3073-3076, Oct. 2002.
[38] S. Arulkumaran, T. Hibino, T. Egawa and H. Ishikawa, “Current collapse-free i-GaN/AlGaN/GaN high-electron-mobility transistors with and without surface passivation”, Appl. Phys. Lett., Vol.85, No. 23, pp.5745-5747, Dec. 2004.
[39] G. Weimann, M. J. Manfra, and T. Wachtler, “Unpassivated AlGaN-GaN HEMTs with minimal RF dispersion grown by plasma-assisted MBE on semi-insulating 6H-SiC substrates”, IEEE Electron Device Lett. Vol. 24, No.2, pp.57-58, Feb. 2003.
[40] H. Kim, R. M. Thompson, V. Tilak, T. R. Prunty, J. R. Shealy, and L. F. Eastman, “Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation,” IEEE Electron Device Lett., vol. 24, pp. 421–423, Jul. 2003.
[41] Feng Gao, Di Chen, Bin Lu, Harry L. Tuller, Carl V. Thompson, Stacia Keller, Umesh K. Mishra, and Tomas Palacios, 'Impact of Moisture and Fluorocarbon Passivation on the Current Collapse of AlGaN/GaN HEMTs,' IEEE Electron Devic. Lett., vol. 33, pp. 1378-1380, Oct. 2012.
[42] Weimin Zhang, Zhuxian Xu, Zheyu Zhang, Fred Wang, Leon M. Tolbert, and Benjamin J. Blalock, 'Evaluation of 600 V Cascode GaN HEMT in Device Characterization and All-GaN-Based LLC Resonant Converter,' in Energy Conversion Congress and Exposition (ECCE), 2013, pp. 3571-3578.
[43] E. Giani, J.P. Mathurin, (1994) 'Quality Issues in Chip-on-board (COB) Technology', Microelectronics International, Vol. 11 Iss: 2, pp.5 – 10, 1982.
[44] Robert John Kanda, Mark Louis Dell'eva, and Steven Lee Ambrose, 'Integrated fluid pressure sensor system,' EP20100771813, August 15, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56907-
dc.description.abstract氮化鎵高電子遷移率電晶體具備高崩潰電壓、高輸出功率與低導通電阻等優良特性,將可取代現今已接近物理極限的矽材功率元件,廣泛應用於高壓電子元件以及高頻高效率電源轉換系統中,例如驅動電動車產品的馬達系統,藉以提升能源使用的效率。然而,由於氮化鋁鎵/氮化鎵異質介面形成大量二維電子氣,傳統氮化鎵高電子遷移率電晶體為空乏型操作。基於電路安全性與電路設計複雜度的考量,空乏型操作的特性將限制其在電源轉換上的應用。
本論文利用 p 型氮化鎵覆蓋層實現增強型操作,並探討製程流程、蝕刻深度與退火溫度對於臨界電壓、操作電流與崩潰電壓之影響。本文中的增強型氮化鎵高電子遷移率電晶體在16微米的閘汲極距離下,可達成 1630伏特的高崩潰電壓操作。與傳統氮化鎵高電子遷移率電晶體相較, p型氮化鎵覆蓋層的存在賦予閘極金屬更多樣性的選擇。本文實現三種不同閘極金屬的增強型氮化鎵高電子遷移率電晶體,探討閘極金屬/p型氮化鎵覆蓋層介面所形成的蕭特基二極體之位障對元件直流特性的影響,並提供不同應用下適當閘極金屬選擇的參考依據。
本論文同時也開發大面積多指型功率元件,並以兩種方式達成操作電流高於6安培之總寬度為30毫米的增強型功率元件。其一為利用空乏型氮化鎵高電子遷移率電晶體串接矽功率元件,並以SO-8形式封裝此 cascode架構;另一則為使用p型氮化鎵覆蓋層單晶片增強型架構。
zh_TW
dc.description.abstractSilicon is the most widely used material for power devices. However, Si-based power devices are approaching their material limits. Gallium nitride (GaN) high electron mobility transistors (HEMTs) have great potential for high-frequency and high-power applications because of their excellent characteristics, such as high breakdown voltage, high output power and low on-resistance. Nonetheless, the inherent normally-on behavior excludes GaN HEMTs from most power electronic applications for reduced circuit complexity and fail-safe operation.
In this thesis, p-GaN cap layer was utilized to raise the conduction band energy underneath the gate contact in order to achieve enhancement-mode (E-mode) operation. The effects of p-GaN etching depth and alloy temperature on the characteristics of the E-mode GaN HEMTs were investigated in order to improve the device performances. By adjusting the process methods, a noticeably high breakdown voltage of 1630V was achieved for the p-GaN cap HEMTs with LGD = 16μm.
Although Ni/Au is commonly used as a gate metal for the commercial GaN HEMTs, many metals can be chosen as the gate contact metal of p-GaN cap HEMTs because most of the metals have adequate work function difference comparing to p-GaN. In this thesis, different gate metals including Ni/Au-, Ti/Au-, and Mo/Ti/Au-gate GaN HEMTs were demonstrated to study the impacts of gate metals on the device performances, such as VTHs, saturated output currents, and breakdown voltages of GaN HEMTs. Compared to Ni/Au-gate HEMTs, the devices with a Mo/Ti/Au gate can improve 32% of the breakdown voltage with a trade-off of reducing 11% of operating current at LGD = 6um.
Moreover, multi-finger large-area power devices were demonstrated. Two kinds of methods were employed to realize E-mode power devices whose operating currents are higher than 6A. One is using a Si MOSFET in series to drive the depletion-mode (D-mode) GaN HEMTs, the other one is using p-GaN cap E-mode HEMTs.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:31:04Z (GMT). No. of bitstreams: 1
ntu-103-R01941022-1.pdf: 5670277 bytes, checksum: 7f73838044c1da0ece18366e7335bf86 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 GaN Applications Overview 1
1.2 AlGaN/GaN HEMTs 3
1.3 E-mode AlGaN/GaN HEMTs 4
Chapter 2 Development of Small-area p-GaN Cap AlGaN/GaN HEMTs 7
2.1 Introduction 7
2.2 Development of D-mode AlGaN/GaN HEMTs 7
2.2.1 Device Structure Design 7
2.2.2 Fabrication 8
2.3 Development of p-GaN cap AlGaN/GaN HEMTs 10
2.3.1 Device Structure Design 10
2.3.2 Fabrication 11
2.4 Small-area p-GaN cap AlGaN/GaN HEMTs performed by Process A 14
2.4.1 Fabrication of Process A 14
2.4.2 Performance of Process A 14
2.5 Small-area p-GaN cap AlGaN/GaN HEMTs performed by Process B 18
2.5.1 Fabrication of Process B 18
2.5.2 Performance of Process B 19
2.6 The Impact of Gate Metals on Performance of Devices 23
2.6.1 Introduction 23
2.6.2 Device Fabrication 24
2.6.3 Transfer Curves 26
2.6.4 ID-VDS Curves 29
2.6.5 Reverse Conduction Mode 30
2.6.6 Breakdown Voltage 32
2.7 Summary 32
Chapter 3 Development of Large-Area GaN HEMTs 35
3.1 Introduction 35
3.2 Comparison of Different Passivation Layers on Devices 35
3.2.1 Effects of Passivation Layers 35
3.2.2 Fabrication 36
3.2.3 Discussion 37
3.2.4 Summary 40
3.3 1st Edition Large-Area D-mode AlGaN/GaN HEMTs 40
3.3.1 Device Structure Design 40
3.3.2 Fabrication 43
3.3.3 Bare Device Performance 43
3.3.4 Summary 44
3.4 2nd Edition Large-Area D-mode AlGaN/GaN HEMTs 46
3.4.1 Device Structure Design 46
3.4.2 Bare Device Performance 47
3.4.3 Summary 48
3.5 3rd Edition Large-Area D-mode AlGaN/GaN HEMTs 49
3.5.1 Device Structure Design 49
3.5.2 Bare Device Performance 49
3.5.3 Summary 52
3.6 Large-Area E-mode AlGaN/GaN HEMTs 52
Chapter 4 Package 55
4.1 Introduction 55
4.2 Cascode Structure 56
4.3 Package Types 57
4.3.1 COB 57
4.3.2 SOIC 57
4.4 Performance of Package 57
4.4.1 Si MOSFET 57
4.4.2 COB 59
4.4.3 SO-8 62
4.5 Summary 65
Chapter 5 Conclusion 66
REFERENCE 68
dc.language.isoen
dc.subject增強型zh_TW
dc.subject氮化鎵zh_TW
dc.subject高電子遷移率電晶體zh_TW
dc.subjectp型氮化鎵覆蓋層zh_TW
dc.subject多指型功率元件zh_TW
dc.subjectHEMTen
dc.subjectGaNen
dc.subjectE-modeen
dc.subjectp-GaN cap layeren
dc.subjectmulti-finger power deviceen
dc.title大尺寸氮化鎵高電子遷移率電晶體的開發及其功率電子應用zh_TW
dc.titleDevelopment of Large-area GaN High Electron Mobility Transistors and the Applications to Power Electronicsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳德玉,許進恭,綦振瀛
dc.subject.keyword高電子遷移率電晶體,氮化鎵,增強型,p型氮化鎵覆蓋層,多指型功率元件,zh_TW
dc.subject.keywordHEMT,GaN,E-mode,p-GaN cap layer,multi-finger power device,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2014-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved