請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56885完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡宛珊 | |
| dc.contributor.author | Nai-Kuang Wu | en |
| dc.contributor.author | 吳乃光 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:30:46Z | - |
| dc.date.available | 2016-08-12 | |
| dc.date.copyright | 2014-08-12 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-07 | |
| dc.identifier.citation | [1] Bose, S. K., and Dey, S. (2013). 'Sediment Entrainment Probability and Threshold of Sediment Suspension: Exponential-Based Approach.' Journal of Hydraulic Engineering ASCE, 139(10), 1099-1106.
[2] Cheng, N.-S., and Chiew, Y.-M. (1998). 'Pickup probability for sediment entrainment.' Journal of Hydraulic Engineering ASCE, 124(2), 232-235. [3] Cheng, N.-S., and Chiew, Y.-M. (1999). 'Analysis of initiation of sediment suspension from bed load.' Journal of Hydraulic Engineering ASCE, 125(8), 855-861. [4] Damgaard, J., Soulsby, R., Peet, A., and Wright, S. (2003). 'Sand transport on steeply sloping plane and rippled beds.' Journal of Hydraulic Engineering ASCE, 129(9), 706-719. [5] Dwivedi, A., Melville, B. W., Shamseldin, A. Y., and Guha, T. K. (2011). 'Flow structures and hydrodynamic force during sediment entrainment.' Water Resources Research, 47(1). [6] Franceschini, S., Tsai, C., and Marani, M. (2012). 'Point estimate methods based on Taylor Series Expansion–The perturbance moments method–A more coherent derivation of the second order statistical moment.' Applied Mathematical Modelling, 36(11), 5445-5454. [7] Hsu, Y.-S., Cai, J.-F., Wei, C.-M., and Huang, H.-P. (2007). ' Rating Relations between Turbidity and Suspended Solids Concentration of Reservoir Sediment-A Case Study of Shi-Men Reservoir.' Journal of Chinese Agricultural Engineering, 53(1), 62-71. [8] Lai, K.-C. (2012). 'Application of continuous-time Markov chain and Gambler’s ruin problem to sediment transport modeling' M.S. thesis, Grad. Inst. Of Civ. Eng., Natl. Taiwan Univ., Taipei. [9] Li, K. (1992). 'Point-estimate method for calculating statistical moments.' Journal of Engineering Mechanics, 118(7), 1506-1511. [10] Malmon, D. V., Dunne, T., and Reneau, S. L. (2003). 'Stochastic theory of particle trajectories through alluvial valley floors.' The Journal of geology, 111(5), 525-542. [11] Nezu, I. (1979). 'Turbulent structure in open-channel flows.' Department of Civil Engineering, Kyoto University. [12] Nezu, I., and Rodi, W. (1986). 'Open-channel flow measurements with a laser Doppler anemometer.' Journal of Hydraulic Engineering ASCE, 112(5), 335-355. [13] Nikora, V., Goring, D., McEwan, I., and Griffiths, G. (2001). 'Spatially averaged open-channel flow over rough bed.' Journal of Hydraulic Engineering ASCE, 127(2), 123-133. [14] Paintal, A. (1971). 'A stochastic model of bed load transport.' Journal of Hydraulic Research, 9(4), 527-554. [15] Parzen, E. (1999). Stochastic processes, SIAM. [16] Ross, S. M. (2006). Introduction to probability models, Academic press. [17] Soulsby, R. (1997). Dynamics of marine sands: a manual for practical applications, Thomas Telford. [18] Sun, Z., and Donahue, J. (2000). 'Statistically derived bedload formula for any fraction of nonuniform sediment.' Journal of Hydraulic Engineering ASCE, 126(2), 105-111. [19] Tsai, C. W., and Franceschini, S. (2005). 'Evaluation of probabilistic point estimate methods in uncertainty analysis for environmental engineering applications.' Journal of environmental engineering, 131(3), 387-395. [20] Tsai, C. W., Hsu, Y., Lai, K.-C., and Wu, N.-K. (2014). 'Application of gambler’s ruin model to sediment transport problems.' Journal of Hydrology, 510, 197-207. [21] Van Rijn, L. C. (1984). 'Sediment transport, part I: bed load transport.' Journal of Hydraulic Engineering ASCE, 110(10), 1431-1456. [22] Van Rijn, L. C. (1984). 'Sediment transport, Part II: Suspended load transport.' Journal of Hydraulic Engineering ASCE, 110(11), 1613-1641. [23] Wang, R. H., and Fan, L. (1976). 'Axial mixing of grains in a motionless Sulzer (Koch) mixer.' Industrial & Engineering Chemistry Process Design and Development, 15(3), 381-388. [24] Wu, F.-C., and Chou, Y.-J. (2003). 'Rolling and lifting probabilities for sediment entrainment.' Journal of Hydraulic Engineering ASCE, 129(2), 110-119. [25] Wu, F.-C., and Lin, Y.-C. (2002). 'Pickup probability of sediment under log-normal velocity distribution.' Journal of Hydraulic Engineering ASCE, 128(4), 438-442. [26] Wu, F.-C., and Yang, K.-H. (2004). 'Entrainment probabilities of mixed-size sediment incorporating near-bed coherent flow structures.' Journal of Hydraulic Engineering ASCE, 130(12), 1187-1197. [27] Wu, F.-C., and Shih, W.-R. (2012). 'Entrainment of sediment particles by retrograde vortices: Test of hypothesis using near‐particle observations.' Journal of Geophysical Research: Earth Surface (2003–2012), 117(F3). [28] Wu, F.-C., and Yang, K.-H. (2004). 'A stochastic partial transport model for mixed‐size sediment: Application to assessment of fractional mobility.' Water resources research, 40(4). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56885 | - |
| dc.description.abstract | In this study, the transport process of uniform size sediment particles under steady and uniform flow is described by two different stochastic process approaches: the Gambler’s ruin problem and the multi-state discrete-time Markov chain. Firstly, the Gambler’s ruin model is employed to estimate the probability of reaching the designated capacity such as the pre-established water quality standard or maximum sediment carrying capacity in different flow conditions. Secondly, for application to the Shihmen reservoir and the Shi Lin weir in Taiwan, the Gambler’s ruin model is employed to simulate the daily effective risk of reaching to the limitation of the established water quality standard that can be handled by the water treatment plant. Finally, the uncertainty analysis is introduced to evaluate the effective risk variation of violating the pre-established water quality standard when considering the variability of the daily water level.
On the other hand, the multi-state discrete-time Markov chain is employed to describe the suspended sediment concentration distribution versus water depth for different steady and uniform flow conditions. Model results are validated against available measurement data and Rouse profile. Moreover, multi-state discrete-time Markov chain can be used to estimate the average time spent for the flow to reach the dynamic equilibrium of particle deposition and entrainment processes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:30:46Z (GMT). No. of bitstreams: 1 ntu-103-R01521312-1.pdf: 4549946 bytes, checksum: c2a6befba96e5000d3f678963b21f7bb (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書....................................................................................................... #
誌謝 ............................................................................................................................... i 中文摘要 ...................................................................................................................... ii ABSTRACT ................................................................................................................ iii CONTENTS ................................................................................................................ iv LIST OF FIGURES ..................................................................................................... vi LIST OF TABLES ..................................................................................................... viii Chapter 1 Introduction .......................................................................................... 1 1.1 Problem Statement ...................................................................................... 1 1.2 Objectives of Study ..................................................................................... 3 1.3 Overview of thesis ...................................................................................... 3 Chapter 2 Literature Review ................................................................................. 6 Chapter 3 Gambler’s ruin Problem .................................................................... 11 3.1 Model Development ................................................................................. 11 3.1.1 Introduction of Modified Gambler’s ruin Problem ........................... 11 3.1.2 Transition Probability Determination ............................................... 13 3.1.3 Dimensionless Shear Stress.............................................................. 16 3.1.4 Sediment Concentration ................................................................... 17 3.2 Case study I: The Shihmen Reservoir Basin .............................................. 20 3.2.1 Hydrologic Station and Data ............................................................ 20 3.2.2 Discharge Calibration and Verification ............................................. 21 3.2.3 Suspended Sediment Discharge Verification .................................... 22 3.2.4 Model Results and Discussion ......................................................... 23 3.3 Case study II: The Shi Lin Weir ................................................................ 31 3.3.1 Hydrologic Station and Data ............................................................ 31 3.3.2 Discharge Calibration ...................................................................... 32 3.3.3 Suspended Sediment Discharge Verification .................................... 33 3.3.4 Model Results and Discussion ......................................................... 34 3.4 Summary .................................................................................................. 36 Chapter 4 Multi-State Discrete-Time Markov Chain Model of Sediment Concentration ..................................................................................... 38 4.1 Model Development ................................................................................. 38 4.1.1 Multi-State Discrete-Time Markov Chain ........................................ 38 4.1.2 Chapman-Kolmogorov Equations and Limiting Probabilities ........... 40 4.1.3 Transition Probability Determination ............................................... 41 4.1.4 Layer Depth-Average Relative Concentration .................................. 44 4.2 Case Study I: Example .............................................................................. 45 4.2.1 Description of Assumption ............................................................... 45 4.2.2 Model Results and Discussion ......................................................... 46 4.2.3 Time Spent to Equilibrium ............................................................... 49 4.3 Case Study II: Laboratory Experiment ...................................................... 51 4.3.1 Sloping Duct Experiments of Damgaard et al. (2003) ...................... 51 4.3.2 Model Results and Discussion ......................................................... 52 4.3.3 Time Spent to Equilibrium ............................................................... 58 4.4 Summary .................................................................................................. 60 Chapter 5 Conclusion and Recommendation ..................................................... 62 REFERENCES ......................................................................................................... 64 | |
| dc.language.iso | en | |
| dc.subject | 賭徒問題 | zh_TW |
| dc.subject | 泥砂運動 | zh_TW |
| dc.subject | 懸浮載濃度分佈 | zh_TW |
| dc.subject | 多態離散時間馬可夫鏈 | zh_TW |
| dc.subject | 不確定分析 | zh_TW |
| dc.subject | suspended sediment concentration distribution | en |
| dc.subject | sediment particle movement | en |
| dc.subject | multi-state discrete-time Markov chain | en |
| dc.subject | uncertainty analysis | en |
| dc.title | 以賭徒問題與多態離散時間馬可夫鏈探討泥砂運動機制 | zh_TW |
| dc.title | Application of Gambler's ruin Problem and Multi-State
Discrete-Time Markov Chain to Sediment Transport Modeling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳富春,余化龍,賴悅仁 | |
| dc.subject.keyword | 泥砂運動,賭徒問題,不確定分析,多態離散時間馬可夫鏈,懸浮載濃度分佈, | zh_TW |
| dc.subject.keyword | sediment particle movement,uncertainty analysis,multi-state discrete-time Markov chain,suspended sediment concentration distribution, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
