請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56834完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳昭瑩 | |
| dc.contributor.author | Yi-Ting Chen | en |
| dc.contributor.author | 陳枻廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:51:27Z | - |
| dc.date.available | 2019-08-11 | |
| dc.date.copyright | 2014-08-11 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-08 | |
| dc.identifier.citation | 1. 柯勇。2002。植物生理學。藝軒圖書出版社。726p。
2. 范美玲。1997。如何幫助觀葉植物過冬。花蓮區農業專訊 22: 14-16。 3. 張汶肇, 張錦興, 林棟樑。2007。茂谷柑果實日燒發生現象及預防。台南區農業專訊 59: 1-6。 4. 張淑賢。1981。本省現行植物分析方法。台灣省農業試驗所編作物需肥診斷技術pp. 53-59。臺中。臺灣 5. 楊玲玲, 陳文輝, 許圳塗, 顏焜熒。2000。食用百合之開發。產業科技發展學術合作論文集pp. 95-100 6. Agarwal, S., Sairam, R. K., Srivastava, G. C., Tyagi, A., Meena, R. C. 2005. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci. 169: 559-570. 7. Ann, P. J., Tsai, J. N., Wong, I. T., Hsieh, T. F., Lin, C. Y. 2009. A simple technique, concentration and application schedule for using neutralized phosphorous acid to control Phytophthora diseases. Plant Pathol. Bull. 18: 155-165. 8. Apel, K., Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399. 9. Asselbergh, B., Curvers, K., Franca, S. C. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144: 1863-1877. 10. Bakker, P. A. H. M., Pieterse, C. M. J., van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243. 11. Bari, R., Jones, J. D. 2009. Role of plant hormones in plant defence responses. Plant Mol. Biol., 69: 473-488. 12. Brautigam, A., Shrestha, R. P., Whitten, D., Wilkerson, C. G., Carr, K. M., Froehlich, J. E., Weber, A. P. 2008. Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. J. Biotech. 136: 44-53. 13. Brian, C. F. and Gwyn, A. B. 2008. An overview of plant defenses against pathogens and herbivores. The Plant Health Instructor. DOI: 10.1094 14. Brooks, A. V. 1980. Lily Diseases and Disorders. Universe Books, New York. 15. Comber, H. 1949. “A new classification of the genus Lilium.” Lily Yearbook. Royal Hortic. Soc., London. 86-105p. 16. Deenik, J., Ares, A., Yost, R. S. 2000. Fertilization response and nutrient diagnosis in peach palm (Bactris gasipaes): a review. Nut. Cycl. Agroeco. 56: 195-207. 17. Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K. 1994. A central role of salicylic acid in plant disease resistance. Science 266: 1247-1250. 18. De Meyer, G., Hofte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87: 588-593. 19. Dodd, A. N., Kudla, J., Sanders, D. 2010. The language of calcium signaling. Annu. Rev. Plant Biol. 61: 593-620. 20. Doss, R. P., Christian, J. K., Chastagner, G. A. 1988. Infection of easter lily leaves from conidia of Botrytis elliptica. Canadian J. Botany. 66: 1204-1208. 21. Durrant, W. E. and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42: 185-209. 22. Elad, Y. 1992. The use of antioxidants (free radical scavengers) to control grey mould (Botrytis cinerea) and white mould (Sclerotinia sclerotiomm) in various crops. Plant Pathol. 41: 417-426. 23. Gong, M., Chen, S. N., Song, Y. Q., Li, Z. G. 1997. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Funct. Plant Biol. 24: 371-379. 24. Govrin, E. M., Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10: 751-757. 25. Hashimoto, M., Kisseleva, L., Sawa, S., Furukawa, T., Komatsu, S., Koshiba, T. 2004. A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol. 45: 550-559. 26. Hensley, K., Williamson, K. S., Floyd, R. A. 2003. Fluorogenic Analysis of H2O2 in biological materials. In methods in biological oxidative stress. Humana Press. 169-174. 27. Hepler, P. K., Wayne, R. O. 1985. Calcium and plant development. Annu. Rev. Plant Physiol. 36: 397-439. 28. Higuchi, R., Fockler, C., Dollinger, G., Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotech. 11: 1026-1030. 29. Hsieh, T. F., Huang, J. W. 1998. Factors affecting disease development of Botrytis leaf blight of lily caused by Botrytis elliptica, Plant Pathol. Bull. 40: 227–240. 30. Hsieh T. F., Tu C. C. 1993. The occurrence of lily leaf blight caused by Botrytis elliptica (Berk.) Cooke in Taiwan. Plant Protect. Bull. 35: 355 (Abstr.) 31. Huang, S., Chen, J. C., Hsu, C. W., Chang, W. H. 2009. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model. Nanotech. 20: 375102. 32. Jain, M., Nijhawan, A., Tyagi, A. K., Khurana, J. P. 2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345: 646-651. 33. Kain, R. J., Wang, Z., Sonda, T. S. 2005. Physicochemical and functionla properties of flour obtained from the bulb of Lilium brownii. African J. Food, Agriculture, Nutrition and Development 4 (Abstr.) 34. Kapat, A., Zimand, Y., Elad, Y. 1998. Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycol. Res. 102: 1017-1024. 35. Kirkby, E. A., Pilbeam, D. J. 1984. Calcium as a plant nutrient. Plant, Cell & Environment 7: 397-405. 36. Kloepper, J. W., Ryu, C. M., Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266. 37. Kudla, J., Batistic, O., Hashimoto, K. 2010. Calcium signals: the lead currency of plant information processing. Plant Cell 22: 541-563. 38. Lecourieux, D., Ranjeva, R., Pugin, A. 2006. Calcium in plant defence-signalling pathways. New Phytol. 171: 249-269. 39. Lee, M. L., 2005. Baseline sensitivity of Botrytis elliptica to fludioxonil in Taiwan. Plant Prot. Bull. 48: 163-171. 40. Leon-Reyes, A., van der Does, D., De Lange, E. S., Delker, C., Wasternack, C., van Wees, S. C., Retsema, T., Pieterse, C. M. 2010. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232: 1423-1432. 41. Li, J. X., Li, N. I. 2008. Test study on oriental lily introduction. J. Anhui Agric. Sci. 35: 175. (chinese) 42. Li, X. Y., Wang, C. X., Sun, H. M., Li, T. L. 2011. Establishment of the total RNA extraction system for lily bulbs with abundant polysaccharides. Afr. J. Biotech. 10: 17907-17915. 43. Li, X., Zhang, Y., Clarke, J. D., Li, Y., Dong, X. 1999. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell 98: 329-339. 44. Liu, Y. H., Huang, C. J., Chen, C. Y. 2008. Evidence of induced systemic resistance against Botrytis elliptica in lily. Phytopathology 98: 830-836. 45. Loreto, F., Velikova, V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127: 1781-1787. 46. Lu, Y. Y., Chen, C. Y. 2005. Molecular analysis of lily leaves in response to salicylic acid effective towards protection against Botrytis elliptica. Plant sci. 169: 1-9. 47. Lu, Y. Y., Liu Y. H, Chen, C. Y. 2007. Stomatal closure, callose deposition, and increase of LsGRP1-corresponding transcript in probenazole-induced resistance against Botrytis elliptica in lily. Plant Sci. 172: 913-919. 48. Lyons, R., Manners, J. M., Kazan, K. 2013. Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Rep. 32: 815-827. 49. Malamy, J., Carr, J. P., Klessig, D. F., Raskin, I. 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002-1004. 50. Małolepsza, U., Urbanek, H. 2000. The oxidants and antioxidant enzymes in tomato leaves treated with o-hydroxyethylorutin and infected with Botrytis cinerea. European J. Plant Pathol. 106: 657-665. 51. Meng, X., Zhang, S. 2013. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51: 245-266. 52. Mardis, E. R. 2008. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 9: 387-402. 53. Mardis, E. R. 2013. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. 6: 287-303. 54. Metzker, M. L. 2010. Sequencing technologies - the next generation. Nat. Rev. Genet. 11: 31-46. 55. Mizrachi, E., Hefer, C. A., Ranik, M., Joubert, F., Myburg, A. A. 2010. De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics 11: 681. 56. Nakamura, O., Mimaki, Y., Nishino, H., Sashida, Y. 1994. Steroidal saponins from the bulbs of Lilium speciosum × L. nobilissimum ‘Stargazer’ and their antitumour-promoter activity. Phytochemistry 36: 463-467. 57. Nassr, S., Barakat, R. 2013. Effect of factors on conidium germination of Botrytis cinerea in vitro. Int. J. Plant & Soil Sci. 2: 41-54. 58. Overmyer, K., Brosche, M., Kangasjarvi, J. 2003. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8: 335–342. 59. Pennell, R. I., Lamb, C. 1997. Programmed cell death in plants. Plant Cell 9. 1157-1167. 60. Percival, G. C., Haynes, A. 2009. The influence of calcium sprays to reduce fungicide inputs against apple scab [Venturia inaequalis (Cooke) G. Wint.]. Arboriculture & Urban Forestry 35: 263–270. 61. Pogany, M., von Rad, U., Grun, S., Dongo, A., Pintye, A., Simoneau, P., Durner, J. 2009. Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. Plant physiol. 151: 1459-1475. 62. Poovaiah, B. W., Du, L., Wang, H., Yang, T. 2013. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. Plant Physiol. 163: 531-542. 63. Prochazkova, D., Sairam, R. K., Srivastava, G. C., Singh, D. V. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci. 161: 765–771. 64. Quan, L. J., Zhang, B., Shi, W. W., Li, H. Y. 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J. Integrative Plant Biol. 50: 2-18. 65. Rasmussen, J. B., Hammerschmidt, R., Zook, M. N. 1991. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol. 97: 1342-1347. 66. Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L., Pachter, L. 2011. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 12: R22. 67. Robertson, G., Schein, J., Chiu, R. 2010. De novo assembly and analysis of RNA-seq data. Nat. Methods 7: 909-912. 68. Salles, I. I., Blount, J. W., Dixon, R. A., Schubert, K. 2002. Phytoalexin production and s-1,3-glucanase activities in Colletotrichum trifolii infected alfalfa (Medicago sativa L.). Physiol. Mol. Plant Pathol. 61: 89-101. 69. Shapiguzov, A., Vainonen, J. P., Wrzaczek, M., Kangasjarvi, J. 2012. ROS-talk–how the apoplast, the chloroplast, and the nucleus get the message through. Frontiers Plant Sci. 3: 292-321. 70. Shetty, N. P., Lyngs-Jorgensen, H. J., Jensen, J. D., Collinge, D. B., Shekar-Shetty, H. 2008. Roles of reactive oxygen species in interactions between plants and pathogens. European J. Plant Pathol. 121: 267-280. 71. Smith, J. A., Hammerschmidt, R., Fulbright, D. W. 1991. Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv. syringae. Physiol. Mol. Plant Pathol. 38: 223–235. 72. Torres, M. A., Dangl, J. L., Jones, J. D. 2002. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99: 517-522. 73. Van Baarlen, P., Staats, M., van Kan, J. A. 2004. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Mol. Plant Pathol. 5: 559-574. 74. Vlot, A. C., Dempsey, D. M. A., Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47: 177-206. 75. von Tiedemann, A. 1997. Evidence for a primary role of oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol. Mol. Plant Pathol. 50: 151-166. 76. Wakuta, S., Suzuki, E., Saburi, W., Matsuura, H., Nabeta, K., Imai, R., Matsui, H. 2011. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound-and pathogen-induced jasmonic acid signalling. Biochem. Biophysi. Res. Commu. 409: 634-639. 77. Wall, P. K., Leebens-Mack, J., Chanderbali, A. S., Barakat, A., Wolcott, E., Liang, H., Altman, N. 2009. Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 10: 347. 78. Wang, L., Tsuda, K., Sato, M., Cohen, J. D., Katagiri, F., Glazebrook, J. 2009. Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathogen 5: e1000301 79. Ward, J. A., Ponnala, L., Weber, C. A. 2012. Strategies for transcriptome analysis in nonmodel plants. Am. J. Bot. 99: 267-276. 80. White, P. J., Broadley, M. R. 2003. Calcium in plants. Ann. Bot. 92: 487-511. 81. Williamson, B., Tudzynski, B., Tudzynski, P., van Kan, J. A. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8: 561-580. 82. Williamson, R.E., Ashley, C. C. 1982. Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296: 647–650. 83. Zhu, Z., Tian, S. 2012. Resistant responses of tomato fruit treated with exogenous methyl jasmonate to Botrytis cinerea infection. Sci. Hortic. 142: 38-43. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56834 | - |
| dc.description.abstract | 鈣是植物體內必需的重要元素,在植物抗病防禦反應具有重要功能。已知阿拉伯芥細胞內的鈣離子可以和攜鈣素(calmodulin)結合形成複合體,調節水楊酸相關防禦反應,植物體內鈣離子含量增加時過氧化氫含量也會增加,進而啟動防禦路徑;在應用方面,已知在蘋果葉面噴灑氯化鈣可以有效防治蘋果瘡痂病。百合是臺灣的重要花卉作物之一,栽培期間常受到灰黴病菌Botrytis elliptica的感染,造成切花生產之嚴重損失。現行百合灰黴病的管理方法主要是藥劑防治,為了減少化學藥劑的使用量,本研究嘗試利用微粒鈣(m-CaCO3)以及氯化鈣(CaCl2),噴灑於葵百合葉片,分析其對灰黴病的防治效果,並探討其作用機制。結果發現施用微粒鈣及氯化鈣均可降低病害的嚴重度,微粒鈣及氯化鈣對B. elliptica的孢子發芽及發芽管延長並無影響,故認為微粒鈣及氯化鈣是藉由誘導植物增加抗病性來達到抑制病害的效果。顯微觀察的結果顯示在接種前1天施用微粒鈣及氯化鈣可以提早百合葉片癒傷葡聚醣的累積;並使百合葉片之過氧化氫含量下降,不利於B. elliptica的感染。由於氯化鈣可增加百合葉片水楊酸含量,而微粒鈣可促進茉莉酸調節防禦反應之LsVSP2基因表現量上升,以及增加LsPR10基因之表現量,暗示微粒鈣及氯化鈣可活化不同的防禦路徑,以增進百合葉片對B. elliptica之抵抗能力,進而減少灰黴病菌對百合的危害;此外在田間防治試驗中使用微粒鈣可以有效地減少灰黴病的嚴重度。綜合以上之結果推斷,微粒鈣及氯化鈣具有防治百合灰黴病的應用潛力,可望開發為減少化學藥劑使用及維護消費者健康的綠色資材。 | zh_TW |
| dc.description.abstract | Calcium is an essential element in plants and has important functions for plant defense. Calcium can bind calmodulin to modulate salicylic acid-mediated plant defense in Arabidopsis. The increase of calcium concentration can induce accumulation of hydrogen peroxide, further activate defense pathways. In practical application, foliar spray of calcium chloride (CaCl2) is known to suppress apple leaf scab. Lilies, a flower crop with economic importance in Taiwan, are often infected by Botrytis elliptica, a fungal pathogen of gray mold, that causes a servere loss in cut-flower production. Traditional control measure of lily gray mold is the use of chemical pesticides. To reduce the use of fungicides, foliar spray of micro-calcium carbonate (m-CaCO3) and CaCl2 instead of fungicides were applied to test their suppressive effect on lily gray mold and perform mechanism study of disease control in this study. In addition, lily ‘Stargazer’ transcriptome was established before analysis of the expression of defense-related genes after calcium treatment. The results of biocontrol assay indicated that m-CaCO3 and CaCl2 could suppress disease development of lily gray mold. Since spore germination and germ tube elongation of B. elliptica were not inhibited by m-CaCO3 and CaCl2, suppressing fungal attacke via activation of plant defense by these calcium compounds was presumed. The microscopical examination showed that callose deposition appeared earlier while inoculated with B. elliptica at one day after calcium treatment, indicating a priming effect of plant defense could be conducted by these calcium compounds. Reduction of hydrogen peroxide concentration supported suppressive effect on B. elliptica infection by these calcium compounds. However, increase of salicylic acid concentration and expressions of LsVSP2 and LsPR10 by micro-carbonate but not calcium chloride treatment indicated different defense pathways activated. In addition, the control efficacy of lily gray mold by micro-carbonate was further demonstrated in field assays. Thus, these calcium compounds are potential agents for the control of lily gray mold and can be developed as green materials for the reduction of fungicide use. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:51:27Z (GMT). No. of bitstreams: 1 ntu-103-R01633015-1.pdf: 5456955 bytes, checksum: 93cf821e02343f5a9ce3c00ddd79373a (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
壹、中文摘要 1 貳、英文摘要 2 参、前言 4 肆、前人研究 6 一、百合灰黴病之發生 6 二、植物防禦反應之研究 7 三、活性氧與植物抗性之關係 8 四、鈣對植物的重要性 9 五、鈣在植物抗病上扮演之角色 10 六、植物轉錄體分析 11 伍、材料與方法 12 一、 供試菌株之培養與保存 12 1. 供試菌株培養 12 2. 供試菌株保存 12 二、 溫室植物栽培 12 三、 處理用化合物 13 四、 罹病級數及統計分析方法 13 五、 百合轉錄體的建立 14 1. 百合總 RNA抽取 14 2. 定序組裝及基因之註解與分類 15 3. 重要防禦相關基因表現量分析 15 六、 評估鈣防治百合灰黴病的效果 16 七、 微粒鈣及一般碳酸鈣之防治效果及水懸浮能力比較 16 1. 防治效果 16 2. 懸浮能力 16 八、 鈣對於百合灰黴病的保護及治療效果測試 16 1. 保護效果測試 16 2. 治療效果測試 16 九、 鈣防治百合花灰黴病效果測試 17 十、 比較不同pH值微粒鈣之防治效果 17 十一、 鈣防治百合灰黴病之效果持久性測試 17 十二、 百合灰黴病整合防治 17 十三、 微粒鈣之防治百合灰黴病田間應用試驗 17 十四、 微粒鈣在OT雜交型百合耶羅琳對百合灰黴病之防治效果測試 18 十五、 鈣對於百合灰黴病菌孢子發芽抑制效果 18 十六、 微粒鈣在百合葉片上的分布情形 18 十七、 處理鈣化合物後之百合葉片鈣含量之探討 18 十八、 鈣於百合灰黴病之防治機制探討 19 1. 癒傷葡聚醣(callose)染色觀察 19 2. 過氧化氫之螢光染色 19 3. 過氧化氫萃取與偵測 19 4. 抗氧化酵素活性測試 20 十九、 百合葉片全水楊酸含量之定量 20 1. 試驗植株及處理 20 2. 百合葉片水楊酸抽取 20 3. 水楊酸高效能液相層析儀分析 21 二十、 防禦相關基因表現分析 21 陸、結果 23 一、 百合轉錄體建立及防禦相關基因資訊分析 23 1. 百合轉錄體建立 23 2. GO基因分類 23 3. 重要防禦反應基因表現量分析 24 二、 評估鈣防治百合灰黴病的效果 24 三、 微粒鈣與一般碳酸鈣之防病效果比較 25 四、 微粒鈣與一般碳酸鈣水懸浮能力比較 25 五、 鈣對於百合灰黴病之保護及治療效果 25 1. 保護效果 25 2. 治療效果 25 六、 鈣處理對百合花瓣之灰黴病防治效果 26 七、 不同pH值微粒鈣之防治效果比較 26 八、 鈣防治百合灰黴病之效果持久性測試 26 九、 百合灰黴病整合性防治 26 十、 微粒鈣之防治百合灰黴病田間應用試驗 27 1. 平均罹病級數 27 2. 株高測量 27 3. 花苞數 28 十一、 微粒鈣處理對OT雜交型百合耶羅琳之灰黴病防治效果 28 十二、 鈣對於百合灰黴病菌孢子發芽之抑制效果 28 十三、 微粒鈣在百合葉片上之分布情形 28 十四、 葉面處理鈣化合物對百合葉片鈣含量之影響 29 十五、 鈣於防治百合灰黴病之機制探討 29 1. 鈣處理對癒傷葡聚醣累積之影響 29 2. 葉片過氧化氫之螢光染色 29 3. 鈣對百合葉片過氧化氫含量的影響 29 4. 鈣處理對接種灰黴病菌之百合葉片過氧化酶含量的影響 30 5. 鈣處理對接種灰黴病菌之百合葉片水楊酸含量的影響 30 6. 鈣處理對接種灰黴病菌之百合葉片防禦相關基因表現的影響 31 柒、討論 32 捌、參考文獻 38 玖、圖表集 47 表一、葵百合轉錄體 48 表二、灰黴病菌感染之百合不同表現量的基因數(總contig數目73,307個) 49 表三、具4倍以上表現量差異之GO分類基因數 50 表四、防禦相關基因表現量分析 51 圖一、百合灰黴病發病指數 52 圖二、百合灰黴病田間發病級數 53 圖三、田間試驗流程 54 圖四、葵百合轉錄體NGS序列的GC含量分布圖 55 圖五、葵百合轉錄體GC 含量和序列長度的關係圖 56 圖六、以細胞生物活性為分類依據的葵百合轉錄體GO序列分類 57 圖七、以細胞組成為依據之葵百合轉錄體GO序列分類 58 圖八、以分子生物功能做為依據的葵百合轉錄體GO序列分類 59 圖九、含鈣化合物對於百合灰黴病的防治效果 60 圖十、微粒鈣與一般碳酸鈣對百合灰黴病的防治效果 61 圖十一、微粒鈣與一般碳酸鈣於水中懸浮時間比較 62 圖十二、鈣處理對百合灰黴病之保護及治療效果 63 圖十三、鈣處理對百合花灰黴病的防治效果 64 圖十四、不同pH值之微粒鈣對百合灰黴病的防治效果 65 圖十五、鈣處理對防治百合灰黴病之效果持久性 66 圖十六、百合灰黴病整合性防治 67 圖十七、田間測試不同濃度微粒鈣處理對百合灰黴病的防治效果 68 圖十八、田間測試不同濃度微粒鈣處理對百合植株生長之影響 69 圖十九、微粒鈣對OT雜交型百合耶羅琳灰黴病的防治效果 70 圖二十、鈣對於灰黴病菌孢子發芽的抑制能力 71 圖二十一、低真空掃描式電子顯微鏡觀察微粒鈣於百合葉片噴灑後的分佈 72 圖二十二、百合葉面處理微粒鈣或氯化鈣後之葉片鈣含量 73 圖二十三、鈣處理對接種灰黴病菌之百合葉片癒傷葡聚醣累積之影響 74 圖二十四、鈣處理對百合葉片過氧化氫含量之影響 75 圖二十五、鈣處理對接種灰黴病菌之百合葉片過氧化氫含量之影響 76 圖二十六、鈣處理對接種灰黴病菌之百合葉片過氧化酶含量之影響 77 圖二十七、鈣處理對接種灰黴病菌之百合葉片水楊酸含量之影響 78 圖二十八、鈣處理對接種灰黴病菌之百合葉片防禦相關基因表現之影響 79 拾、附錄 80 附錄一、用於半定量反轉錄聚合酶連鎖反應之百合基因及其引子序列 81 附錄二、LsPR10胺基酸序列比對 82 附錄三、Ls EF-1α胺基酸序列比對 83 附錄四、LsVSP2胺基酸序列比對 84 附錄五、LsCaM胺基酸序列比對 85 附錄六、LsRBOH F胺基酸序列比對 87 附錄七、LsPR1胺基酸序列比對 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | Botrytis elliptica | zh_TW |
| dc.subject | 癒傷葡聚醣 | zh_TW |
| dc.subject | 過氧化氫 | zh_TW |
| dc.subject | 水楊酸 | zh_TW |
| dc.subject | 植物防禦相關基因 | zh_TW |
| dc.subject | 微粒鈣 | zh_TW |
| dc.subject | 百合灰黴病 | zh_TW |
| dc.subject | hydrogen peroxide | en |
| dc.subject | callose | en |
| dc.subject | Botrytis elliptic | en |
| dc.subject | calcium | en |
| dc.subject | plant defense-related genes | en |
| dc.subject | salicylic acid | en |
| dc.subject | Lily gray mold | en |
| dc.title | 鈣於百合灰黴病之防治應用及機制研究 | zh_TW |
| dc.title | Application of calcium on the control of lily gray mold and the mechanism study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾文鑫,林詩舜,鍾嘉綾,李青澔 | |
| dc.subject.keyword | 百合灰黴病,微粒鈣,Botrytis elliptica,癒傷葡聚醣,過氧化氫,水楊酸,植物防禦相關基因, | zh_TW |
| dc.subject.keyword | Lily gray mold,calcium, Botrytis elliptic,callose, hydrogen peroxide,salicylic acid,plant defense-related genes, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-08 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
