Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56809
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳振中(Jerry Chun Chung Chan)
dc.contributor.authorChien-I Yangen
dc.contributor.author楊千儀zh_TW
dc.date.accessioned2021-06-16T05:49:50Z-
dc.date.available2015-08-11
dc.date.copyright2014-08-11
dc.date.issued2014
dc.date.submitted2014-08-08
dc.identifier.citation1. Sipe, J. D. & Cohen, A. S. Review: History of the Amyloid Fibril. J. Struct. Biol. 130, 88–98 (2000).
2. Eisenberg, D. & Jucker, M. The Amyloid State of Proteins in Human Diseases. Cell 148, 1188–1203 (2012).
3. Astbury, W. T., Dickinson, S. & Bailey, K. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem. J. 29, 2351–2360.1 (1935).
4. Serpell, L. C., Benson, M., Liepnieks, J. J. & Fraser, P. E. Structural analyses of fibrinogen amyloid fibrils. Amyloid 14, 199–203 (2007).
5. Lomakin, A., Chung, D. S., Benedek, G. B., Kirschner, D. A. & Teplow, D. B. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc. Natl. Acad. Sci. U.S.A. 93, 1125–1129 (1996).
6. Gillam, J. E. & MacPhee, C. E. Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth. J. Phys. Condens. Matter 25, 373101 (2013).
7. Chiti, F. & Dobson, C. M. Protein Misfolding, Functional Amyloid, and Human Disease. Annu. Rev. Biochem. 75, 333–366 (2006).
8. Meinhardt, J., Sachse, C., Hortschansky, P., Grigorieff, N. & Fandrich, M. Aβ(1-40) Fibril Polymorphism Implies Diverse Interaction Patterns in Amyloid Fibrils. J. Mol. Biol. 386, 869–877 (2009).
9. Lu, J.-X. et al. Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue. Cell 154, 1257–1268 (2013).
10. Berchtold, N. C. & Cotman, C. W. Evolution in the Conceptualization of Dementia and Alzheimer’s Disease: Greco-Roman Period to the 1960s. Neurobiol. Aging 19, 173–189 (1998).
11. Amaducci, L. A., Rocca, W. A. & Schoenberg, B. S. Origin of the distinction between Alzheimer’s disease and senile dementia How history can clarify nosology. Neurology 36, 1497–1497 (1986).
12. Kidd, M. ALZHEIMER’S DISEASE —AN ELECTRON MICROSCOPICAL STUDY. Brain 87, 307–320 (1964).
13. Miyakawa, T., Sumiyoshi, S., Murayama, E. & Deshimaru, M. Ultrastructure of capillary plaque-like degeneration in senile dementia. Acta Neuropathol. 29, 229–236 (1974).
14. Glenner, G. G. & Wong, C. W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).
15. Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. U.S.A. 82, 4245–4249 (1985).
16. Selkoe, D., Abraham, C., Podlisny, M. & Duffy, L. Isolation of Low-Molecular-Weight Proteins from Amyloid Plaque Fibers in Alzheimers-Disease. J. Neurochem. 46, 1820–1834 (1986).
17. Selkoe, D. J. The molecular pathology of Alzheimer’s disease. Neuron 6, 487–498 (1991).
18. Merz, P. A. et al. Ultrastructural morphology of amyloid fibrils from neuritic and amyloid plaques. Acta Neuropathol. 60, 113–124 (1983).
19. LaFerla, F. M., Green, K. N. & Oddo, S. Intracellular amyloid-β in Alzheimer’s disease. Nat. Rev. Neurosci. 8, 499–509 (2007).
20. Kojro, E. & Fahrenholz, F. in Alzheimer’s Dis. (eds. Harris, J. R. & Fahrenholz, F.) 105–127 (Springer US, 2005). at <http://link.springer.com/chapter/10.1007/0-387-23226-5_5>
21. Younkin, S. G. The role of Aβ42 in Alzheimer’s disease. J. Physiol.-Paris 92, 289–292 (1998).
22. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).
23. Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).
24. Hardy, J. & Selkoe, D. J. The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science 297, 353–356 (2002).
25. Lue, L.-F. et al. Soluble Amyloid β Peptide Concentration as a Predictor of Synaptic Change in Alzheimer’s Disease. Am. J. Pathol. 155, 853–862 (1999).
26. McLean, C. A. et al. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46, 860–866 (1999).
27. Wang, J., Dickson, D. W., Trojanowski, J. Q. & Lee, V. M.-Y. The Levels of Soluble versus Insoluble Brain Aβ Distinguish Alzheimer’s Disease from Normal and Pathologic Aging. Exp. Neurol. 158, 328–337 (1999).
28. Naslund J, Haroutunian V, Mohs R & et al. COrrelation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 283, 1571–1577 (2000).
29. Lasagna-Reeves, C. A., Glabe, C. G. & Kayed, R. Amyloid-β Annular Protofibrils Evade Fibrillar Fate in Alzheimer Disease Brain. J. Biol. Chem. 286, 22122–22130 (2011).
30. Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. & Lansbury, P. T. Neurodegenerative disease: Amyloid pores from pathogenic mutations. Nature 418, 291–291 (2002).
31. Lin, H., Bhatia, R. & Lal, R. Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J. 15, 2433–2444 (2001).
32. Lambert, M. P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. U.S.A. 95, 6448–6453 (1998).
33. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).
34. Lacor, P. N. et al. Synaptic Targeting by Alzheimer’s-Related Amyloid β Oligomers. J. Neurosci. 24, 10191–10200 (2004).
35. Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 15, 349–357 (2012).
36. Barghorn, S. et al. Globular amyloid β-peptide1−42 oligomer − a homogenous and stable neuropathological protein in Alzheimer’s disease. J. Neurochem. 95, 834–847 (2005).
37. Nimmrich, V. et al. Amyloid β Oligomers (Aβ1–42 Globulomer) Suppress Spontaneous Synaptic Activity by Inhibition of P/Q-Type Calcium Currents. J. Neurosci. 28, 788–797 (2008).
38. Yu, L. et al. Structural Characterization of a Soluble Amyloid β-Peptide Oligomer. Biochemistry (Mosc.) 48, 1870–1877 (2009).
39. Hoshi, M. et al. Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc. Natl. Acad. Sci. U.S.A. 100, 6370–6375 (2003).
40. Noguchi, A. et al. Isolation and Characterization of Patient-derived, Toxic, High Mass Amyloid β-Protein (Aβ) Assembly from Alzheimer Disease Brains. J. Biol. Chem. 284, 32895–32905 (2009).
41. Matsumura, S. et al. Two Distinct Amyloid β-Protein (Aβ) Assembly Pathways Leading to Oligomers and Fibrils Identified by Combined Fluorescence Correlation Spectroscopy, Morphology, and Toxicity Analyses. J. Biol. Chem. 286, 11555–11562 (2011).
42. Kayed, R. et al. Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science 300, 486–489 (2003).
43. Demuro, A. et al. Calcium Dysregulation and Membrane Disruption as a Ubiquitous Neurotoxic Mechanism of Soluble Amyloid Oligomers. J. Biol. Chem. 280, 17294–17300 (2005).
44. Deshpande, A., Mina, E., Glabe, C. & Busciglio, J. Different Conformations of Amyloid β Induce Neurotoxicity by Distinct Mechanisms in Human Cortical Neurons. J. Neurosci. 26, 6011–6018 (2006).
45. Chimon, S. et al. Evidence of fibril-like beta-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s beta-amyloid. Nat. Struct. Mol. Biol. 14, 1157–1164 (2007).
46. Chimon, S. & Ishii, Y. Capturing Intermediate Structures of Alzheimer’s β-Amyloid, Aβ(1−40), by Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 127, 13472–13473 (2005).
47. Ahmed, M. et al. Structural conversion of neurotoxic amyloid-β1-42 oligomers to fibrils. Nat. Struct. Mol. Biol. 17, 561–567 (2010).
48. Hartley, D. M. et al. Protofibrillar Intermediates of Amyloid β-Protein Induce Acute Electrophysiological Changes and Progressive Neurotoxicity in Cortical Neurons. J. Neurosci. 19, 8876–8884 (1999).
49. Harper, J. D., Wong, S. S., Lieber, C. M. & Lansbury Jr, P. T. Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125 (1997).
50. Paranjape, G. S., Gouwens, L. K., Osborn, D. C. & Nichols, M. R. Isolated Amyloid-β(1–42) Protofibrils, But Not Isolated Fibrils, Are Robust Stimulators of Microglia. ACS Chem. Neurosci. 3, 302–311 (2012).
51. Gong, Y. et al. Alzheimer’s disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. U.S.A. 100, 10417–10422 (2003).
52. Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).
53. Noguchi, A. et al. Isolation and Characterization of Patient-derived, Toxic, High Mass Amyloid β-Protein (Aβ) Assembly from Alzheimer Disease Brains. J. Biol. Chem. 284, 32895–32905 (2009).
54. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307, 262–265 (2005).
55. Paravastu, A. K., Leapman, R. D., Yau, W.-M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc. Natl. Acad. Sci. U.S.A. 105, 18349–18354 (2008).
56. Scheidt, H. A., Morgado, I. & Huster, D. Solid-state NMR Reveals a Close Structural Relationship between Amyloid-β Protofibrils and Oligomers. J. Biol. Chem. 287, 22822–22826 (2012).
57. Hoyer, W., Gronwall, C., Jonsson, A., Stahl, S. & Hard, T. Stabilization of a β-hairpin in monomeric Alzheimer’s amyloid-β peptide inhibits amyloid formation. Proc. Natl. Acad. Sci. U.S.A. 105, 5099–5104 (2008).
58. Sandberg, A. et al. Stabilization of neurotoxic Alzheimer amyloid-β oligomers by protein engineering. Proc. Natl. Acad. Sci. U.S.A. 107, 15595–15600 (2010).
59. Chen, W.-T., Liao, Y.-H., Yu, H.-M., Cheng, I. H. & Chen, Y.-R. Distinct Effects of Zn2+, Cu2+, Fe3+, and Al3+ on Amyloid- Stability, Oligomerization, and Aggregation: AMYLOID- DESTABILIZATION PROMOTES ANNULAR PROTOFIBRIL FORMATION. J. Biol. Chem. 286, 9646–9656 (2011).
60. Bangham, A. D. Membrane models with phospholipids. Prog. Biophys. Mol. Biol. 18, 29–95 (1968).
61. PharmaTutor. LIPOSOME NOVEL DRUG DELIVERY SYSTEM | PharmaTutor. (2012). at <http://www.pharmatutor.org/articles/liposome-novel-drug-delivery-system>
62. Vemuri, S. & Rhodes, C. T. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv. 70, 95–111 (1995).
63. Laouini, A. et al. Preparation, Characterization and Applications of Liposomes: State of the Art. J. Colloid Sci. Biotechnol. 1, 147–168 (2012).
64. Bangham, A. D., Hill, M. W. & Miller, N. G. A. in Methods Membr. Biol. (ed. Korn, E. D.) 1–68 (Springer US, 1974). at <http://link.springer.com/chapter/10.1007/978-1-4615-7422-4_1>
65. Avanti Polar Lipids. at <http://avantilipids.com/index.php?option=com_content&view=article&id=1384&Itemid=372>
66. Szoka, F. & Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. U.S.A. 75, 4194–4198 (1978).
67. Pidgeon, C., Mcneely, S., Schmidt, T. & Johnson, J. Multilayered Vesicles Prepared by Reverse-Phase Evaporation - Liposome Structure and Optimum Solute Entrapment. Biochemistry (Mosc.) 26, 17–29 (1987).
68. Williams, T. L. & Serpell, L. C. Membrane and surface interactions of Alzheimer’s Aβ peptide – insights into the mechanism of cytotoxicity. FEBS J. 278, 3905–3917 (2011).
69. Chi, E. Y. et al. Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer’s disease amyloid-β peptide. Proteins Struct. Funct. Bioinforma. 72, 1–24 (2008).
70. Williams, T. L., Day, I. J. & Serpell, L. C. The Effect of Alzheimer’s Aβ Aggregation State on the Permeation of Biomimetic Lipid Vesicles. Langmuir 26, 17260–17268 (2010).
71. Sabate, R., Espargaro, A., Barbosa-Barros, L., Ventura, S. & Estelrich, J. Effect of the surface charge of artificial model membranes on the aggregation of amyloid β-peptide. Biochimie 94, 1730–1738 (2012).
72. Canale, C. et al. Different effects of Alzheimer’s peptide Aβ(1–40) oligomers and fibrils on supported lipid membranes. Biophys. Chem. 182, 23–29 (2013).
73. Lin, H., Bhatia, R. & Lal, R. Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J. 15, 2433–2444 (2001).
74. Strodel, B., Lee, J. W. L., Whittleston, C. S. & Wales, D. J. Transmembrane Structures for Alzheimer’s Aβ1−42 Oligomers. J. Am. Chem. Soc. 132, 13300–13312 (2010).
75. Chauhan, A., Ray, I. & Chauhan, V. P. S. Interaction of Amyloid Beta-Protein with Anionic Phospholipids: Possible Involvement of Lys28 and C-Terminus Aliphatic Amino Acids. Neurochem. Res. 25, 423–429 (2000).
76. Terzi, E., Holzemann, G. & Seelig, J. Interaction of Alzheimer β-Amyloid Peptide(1−40) with Lipid Membranes†. Biochemistry (Mosc.) 36, 14845–14852 (1997).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56809-
dc.description.abstract由β-amyloid (Aβ)胜肽所組成的類澱粉樣纖維沉積物為阿茲海默症最明顯的病理特徵之一。Aβ從單體聚合成類澱粉樣纖維的過程之中,寡聚物被視為是重要的中間態,並且被認為很可能是造成細胞死亡的元凶之一。然而,由於寡聚物的定義不明確並且合成純化困難,實驗上並不容易得到均勻度高的樣品以進行分子結構的測量。因此,我們嘗試以微脂體提供物理性的空間,將Aβ1−40限制在其中生長,期望能阻止其形成纖維,並在微脂體內達到穩定一致的結構,以便使用固態核磁共振技術分析結構。
在本實驗當中,我們使用逆相蒸發法合成微脂體來包覆Aβ1−40胜肽單體,其包覆效率為14%左右,比一般常用的薄膜水合法來得高。在經過培養之後,我們在電子顯微鏡下觀察到類澱粉纖維的形貌,顯示微脂體並無法限制住類澱粉纖維的生長,反而是促進Aβ1−40在低濃度(3 μM)的條件下生長。我們認為其原因可能是限制空間保持了較高的Aβ1−40局部濃度,同時微脂體的膜表面可做為二維的模板以促進Aβ1−40的纖維化。微脂體培養出的纖維以及在低溫、溶液態中培養出來的Aβ1−40寡聚物經由固態核磁共振技術分析之後,均具有β-sheet的二級結構,但在分子結構上有些許差異,與文獻中Tycko所發表的Aβ1−40纖維的結構也不同。此結構差異可能來自於微脂體對纖維結構的調控,但仍需要進一步證實。
zh_TW
dc.description.abstractOne of the hallmarks of the Alzheimer’s disease (AD) is the amyloid plaques consisting of β-amyloid (Aβ) fibrils. Aβ oligomers have been considered as an important intermediate in the pathway of fibrillization, and are suggested to be the primary pathological species of AD. However, little is known about the molecular structure of Aβ oligomers because of their structural heterogeneity and transient nature. Therefore, we attempt to use liposomes to limit the fibrillization process by providing a confined space for Aβ1−40 in order to obtain stabilized oligomers, for which solid-state NMR technique can be utilized to identify the molecular structure.
In this work, liposomes containing approximately 14% of Aβ1−40 monomers are synthesized with the reverse-phase evaporation method, which is more efficient than the thin-film liposome preparation method. However, instead of being confined by liposomes, the peptides form fibrils at a surprisingly low concentration of 3 μM. We propose that the liposomes may maintain a high local concentration of peptides, and may act as two-dimensional templates to accelerate the fibrillization of Aβ1−40. Solid-state NMR spectra reveal that the fibrils possess β-sheet secondary structure which is structurally different from oligomers prepared in buffer solution at 4 degrees Celsius. The chemical shift data of our fibril sample show significant difference from those reported for Tycko’s fibrils incubated in bulk solution. Additional experiments are required to confirm whether or not the structural distinction of our fibril sample is due to the modulation effect of liposomes.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:49:50Z (GMT). No. of bitstreams: 1
ntu-103-R01223110-1.pdf: 10655817 bytes, checksum: a6536aba9ec75b9b33a021281d5f4102 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents謝誌……. i
中文摘要 iii
Abstract… iv
縮寫表… v
第一章 緒論 1
1-1 類澱粉樣蛋白纖維 1
1-2 阿茲海默症以及Aβ胜肽所扮演的角色 5
1-3 不同形態的Aβ寡聚物 8
1-4 以固態核磁共振光譜探討Aβ聚合體之結構 10
1-5 Aβ寡聚物之穩定 14
1-6 微脂體及其製備方法之簡介 15
1-7 Aβ胜肽與脂質膜間的交互作用 18
1-8 研究動機 20
1-9 參考資料 20
第二章 合成與鑑定 29
2-1 材料與使用儀器 29
2-1-1 化學藥品 29
2-1-2 實驗儀器 31
2-2 胜肽製備 33
2-2-1 胜肽合成 33
2-2-2 胜肽純化 36
2-2-3 胜肽鑑定 37
2-3 Aβ1-40類澱粉樣纖維及寡聚物製備 39
2-4 包覆Aβ1-40單體之微脂體製備 40
2-4-1 LipoAβ製備—薄膜水合法 40
2-4-2 LipoAβ製備—逆相蒸發法 42
2-4-3 LipoAβ純化—凝膠管柱層析法 43
2-5 Aβ1-40類澱粉樣纖維、寡聚物及微脂體之鑑定 43
2-5-1 ThT螢光偵測 43
2-5-2 穿透式電子顯微鏡 45
2-5-3 動態光散射粒徑分佈儀 46
2-6 微脂體包覆率之檢測—斑點印迹法 48
2-7 Aβ1-40於微脂體內部之結構鑑定—固態核磁共振光譜 49
2-7-1 核磁共振基本原理 50
2-7-2 固態核磁共振技術 51
2-8 參考文獻 56
第三章 實驗結果與討論 59
3-1 胜肽的合成、純化與鑑定 59
3-2 Aβ1-40類澱粉樣纖維及寡聚物之鑑定 61
3-3 以微脂體包覆Aβ1-40單體 65
3-3-1 lipoAβ中Aβ1-40之含量 67
3-3-2 LipoAβ樣品中微脂體之鑑定 70
3-3-3 LipoAβ樣品中Aβ1−40之鑑定 73
3-4 Aβ1−40分子結構之鑑定−固態核磁共振光譜 76
3-5 結果討論 84
3-6 參考資料 86
第四章 結論及未來展望 89
4-1 論文總結 89
4-2 未來展望 89
4-3 參考資料 90
附錄……. 92
(一) 同位素標定之Aβ1−40鑑定 92
(二) 微脂體之Aβ1−40局部濃度計算 96
dc.language.isozh-TW
dc.title以微脂體限制類澱粉樣多肽分子之固態核磁共振光譜結構探討zh_TW
dc.titleConfinement of Aβ1−40 Peptides in Liposome for Structural Characterization by Solid-State NMRen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴桓青(Hwan-Ching Tai),黃人則(Joseph Jen-Tse Huang)
dc.subject.keyword阿茲海默症,類澱粉樣蛋白,固態核磁共振,微脂體,zh_TW
dc.subject.keywordbeta-amyloid,solid-state NMR,liposome,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2014-08-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
10.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved