請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56808
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施吉昇(Chi-Sheng Shih) | |
dc.contributor.author | Yu-Hsin Wang | en |
dc.contributor.author | 王宇新 | zh_TW |
dc.date.accessioned | 2021-06-16T05:49:46Z | - |
dc.date.available | 2016-08-12 | |
dc.date.copyright | 2014-08-12 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-08 | |
dc.identifier.citation | [1] “The
'Standard Architecture' for Mirror API Glassware,” https://blog.glassdiary.com/post/55154263362/the-standard-architecture-for- mirror-api-glassware. [2] C.-S. S. Jian-Hao Chen, “Design and Implemntation of Resource-Aware Computa- tion Framework over Heterogeneous Mobile Cloud System.” [3] P.-H. T. C.-Y. H. Kuan-Ta Chen, Yu-Chun Chang and C.-L. Lei, “Measuring the Latency of Cloud Gaming Systems.” [4] “OpenCL Official Website,” https://www.khronos.org/opencl/. [5] K.-J. L. B. R.-C. J.-Y. Liu J.W.S., Wei-Kuan Shih, “Imprecise Computation,” Pro- ceedings of the IEEE, vol. 82, pp. 83–94, 1994. [6] B. S. McKnight L.W., Howison J., “Guest Editors’ Introduction: Wireless Grids– Distributed Resource Sharing by Mobile, Nomadic, and Fixed Devices,” Internet Computing, IEEE, vol. 8, 2004. [7] B. S. Martin Waldburger, “Toward the Mobile Grid: Service Provisioning in a Mo- bile Dynamic Virtual Organization.” [8] W. R. Niroshinie Fernando, Seng W. Loke, “Mobile cloud computing: A survey,” 2012. [9] S. A. S. Michael F. Wehner, Camille B. Wehner, “Mobile grid computing.” [10] “HTC Power To Give,” https://play.google.com/store/apps/details?id=com.htc.ptg. [11] K. T. T. V. Antonios Litke, Dimitrios Skoutas, “Efficient task replication and man- agement for adaptive fault tolerance in Mobile Grid environments,” Futher Genera- tion Computer Systems, vol. 23, pp. 163–178, 2007. [12] B. L. K.H. Wang, “Group mobility and partition prediction in wireless ad-hoc networks,” Communications, 2002. ICC 2002. IEEE International Conference on, vol. 2, 2002. [13] J. C. H. Jong-Kwon Lee, “Modeling Steady-state and Transient Behaviors of User Mobility: Formulation, Analysis, and Application.” [14] A. N. Yi-Bing Lin, Seshadri Mohan, “Queueing Priority Channel Assignment Strategies for PCS Hand-Off and Initial Access.” [15] W. W. J. L. Ping Ui, Jiannong Cao, “Mobile Agent Enabled Applictaion Mobility for Pervasive Computing,” Ubiquitous Intelligence and Computing Lecture Notes in Computer Science, vol. 4159, pp. 648–657, 2006. [16] M. K. D. Z. Vaskar Raychoudhury, Jiannong Cao, “Middleware for pervasive com- puting: A survey,” Pervasice and Mobile Computing, vol. 9, pp. 177–200, 2013. [17] M. A. D. S. Misra A., Das S., “Autoconfiguration, registration, and mobility manage- ment for pervasice computing,” Personal Communications, IEEE, vol. 8, pp. 24–31, 2001. [18] J. J.-U. C. Wei-Kuan Shih, Liu, “Algorithms for scheduling imprecise computations with timing constraints,” 1990. [19] J. Wei-Kuan Shih, Liu, “Algorithms for scheduling imprecise computations with timing constraints to minimize maximum error,” 1995. [20] K.-J. L. Jen-Yao Chung, Jane W.S. Liu, “Scheduling Periodic Jobs That Allow Im- precise Results,” 1990. [21] C.-H. T. Wei-Kuan Shih, Che-Rung Lee, “A fast algorithm for scheduling imprecise computations with timing constraints to minimize weighted error,” 2000. [22] M. G. William Su, Sung-Ju Lee, “Mobility Prediction in Wireless Networks,” 2000. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56808 | - |
dc.description.abstract | 現今在行動運算上的運用越來越多樣化,許許多多的行動運用藉著行動裝置與雲端科技的結合改變了我們的生活方式與型態,同時我們發現,行動裝置的運算能力其實也是越來越強,是否可以利用這一點來增進整個行動運算的運算架構來補足對於網路方面的依賴?
本篇論文從這個觀點出發,提出了一個可以利用週邊裝置運算的運算框架,使得我們即使不把資料送到雲端也可以完成複雜的計算要求, 這讓整個行動運算對於網路的要求大幅下降,只要利用週邊閒置的運算裝置就可以達成的任務。 在這之中,本篇論文也提出了在這個運算框架裡如何去作任務排程。 我們結合了非精確計算的運算模型與使用者的移動模型,藉由這個模型我們可以有效的規劃以及使用周遭提供的運算資源,使得我們可以作更有效率的運算而不浪費資源,我們也提出了一個排程演算法來針對這種運算模型作排程,藉由這個排程演算法,我們可以確實的達到有效利用資源的這個目標。 在最後實驗的部份,我們藉由模擬的方式來比較我們提出的演算法與其他已知演算法的差異,實驗結果顯示我們的演算法雖然不會完成最多的工作,但是系統資源的性價比會是最好的,這證明我們的演算法會確實讓資源得到最有效的利用。 | zh_TW |
dc.description.abstract | The applications of mobile computing are various.
More and more mobile applications change our live by the mobile device and the cloud computing technology. In the meanwhile, we found the computation power of the mobile device also become more and more powerful. From the observation, maybe we can improve the mobile computing architecture by the growth of the computation power of mobile devices and reduce the network requirement of mobile computing. This thesis starts from the observation above and proposes a framework which can leverage the computation resource of the idle device which around us. We can complete a complicated task even if we do not need the help of the cloud. It makes the network requirement of mobile computing decreasing. We can achieve the task only with the help of the device around us. In addition, we propose the scheduling problem in this thesis. We combine the imprecise computation model and user mobility. We can be more accuracy to scheduling the task and make less waste of the resources. We also propose a scheduling algorithm to solve it. By the algorithm, we can fulfill the target of using the resource efficiently. In the experiment, we compare our scheduling algorithm with other known algorithm by simulation. The result shows that our scheduling algorithm does not complete the most tasks though, the cost-performance of system resources is the best. It proves the system resources are truely used efficiently. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:49:46Z (GMT). No. of bitstreams: 1 ntu-103-R01922084-1.pdf: 1801300 bytes, checksum: 1332424a9490b86a6e7756bd047dd108 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Contents
口 試 委 員 會 審 定 書 i 致 謝 ii 摘 要 iii Abstract iv 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background and Related Work 6 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Difference between OpenCL 1.1, 1.2 and 2.0 . . . . . . . . . . . 10 2.1.3 Imprecise Computation Model . . . . . . . . . . . . . . . . . . . 11 2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Mobile Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Fault tolerance in Mobile Grid . . . . . . . . . . . . . . . . . . . 12 2.2.3 User Mobility in System . . . . . . . . . . . . . . . . . . . . . . 12 2.2.4 Imprecise Computation Scheduling . . . . . . . . . . . . . . . . 13 3 System Architecture, Workload Model, and Problem Definition 14 3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 Host Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.2 Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Term And Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 Workload Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.2 Mobility Adjustment . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Targeted Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Design and Implementation 20 4.1 Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.1 CPF Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . 20 4.1.2 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Framework Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.2 Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.3 Servant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Experiment 27 5.1 Experiment Environment and Workload . . . . . . . . . . . . . . . . . . 27 5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Conclusion 35 Bibliography 36 | |
dc.language.iso | en | |
dc.title | 行動雲彈性運算架構的設計與實作 | zh_TW |
dc.title | Elastic Computation Framework in Fog/Mobile Cloud Computing Environment | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳伶志(Ling-Jyh Chen),逄愛君(Ai-Chun Pang),王佑中(Yu-Chung Wang),李佳儒(Jia-Ru Li) | |
dc.subject.keyword | 行動計算,非精確計算,開放式計算語言, | zh_TW |
dc.subject.keyword | Mobile Computing,Imprecise Computing,OpenCL, | en |
dc.relation.page | 38 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-08 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。