Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56749
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳基旺
dc.contributor.authorChia-Yu Wuen
dc.contributor.author吳佳瑀zh_TW
dc.date.accessioned2021-06-16T05:46:04Z-
dc.date.available2019-10-20
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-08-11
dc.identifier.citation1. WHO Media centre. Cancer. http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed June, 12, 2014).
2. Egger, G.; Liang, G. N.; Aparicio, A.; Jones, P. A., Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004, 429 (6990), 457-463.
3. Natarajan, L. M. V. a. R., The role of epigenetics in the pathology of diabetic complications. Am. J. Physiol. Renal. Physiol. 2010, 299, F14–F25.
4. Javierre, B. M.; Fernandez, A. F.; Richter, J.; Al-Shahrour, F.; Martin-Subero, J. I.; Rodriguez-Ubreva, J.; Berdasco, M.; Fraga, M. F.; O'Hanlon, T. P.; Rider, L. G.; Jacinto, F. V.; Lopez-Longo, F. J.; Dopazo, J.; Forn, M.; Peinado, M. A.; Carreno, L.; Sawalha, A. H.; Harley, J. B.; Siebert, R.; Esteller, M.; Miller, F. W.; Ballestar, E., Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010, 20, 170-179.
5. Barnes, P. J.; Adcock, I. M.; Ito, K., Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur. Respir. J. 2005, 25, 552-563.
6. Altucci, L.; Minucci, S., Epigenetic therapies in haematological malignancies: Searching for true targets. Eur. J. Cancer 2009, 45 (7), 1137-1145.
7. Fouse, S. D.; Costello, J. F., Epigenetics of neurological cancers. Future Oncol. 2009, 5 (10), 1615-29.
8. Allfrey, V. G.; Faulkner, R.; Mirsky, A. E., Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 1964, USA 51, 786-794
9. Bolden, J. E.; Peart, M. J.; Johnstone, R. W., Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug. Discov. 2006, 5 (9), 769-84.
10. de Ruijter, A. J.; van Gennip, A. H.; Caron, H. N.; Kemp, S.; van Kuilenburg, A. B., Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 2003, 370, 737-749.
11. Giannini, G.; Cabri, W.; Fattorusso, C.; Rodriquez, M., Histone deacetylase inhibitors in the treatment of cancer: overview and perspectives. Future Med. Chem. 2012, 4, 1439-1460.
12. Witt, O.; Deubzer, H. E.; Milde, T.; Oehme, I., HDAC family: What are the cancer relevant targets? Cancer Lett. 2009, 277 (1), 8-21.
13. Riggs, M. G.; Whittaker, R. G.; Neumann, J. R.; Ingram, V. M., n-Butyrate causes histone modification in HeLa and Friend erythroleukemia cells. Nature 1977, 268, 462-464.
14. (a) Marek, L.; Hamacher, A.; Hansen, F. K.; Kuna, K.; Gohlke, H.; Kassack, M. U.; Kurz, T., Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J. Med. Chem. 2013, 56 (2), 427-36; (b) Olson, D. E.; Wagner, F. F.; Kaya, T.; Gale, J. P.; Aidoud, N.; Davoine, E. L.; Lazzaro, F.; Weiwer, M.; Zhang, Y. L.; Holson, E. B., Discovery of the first histone deacetylase 6/8 dual inhibitors. J. Med. Chem. 2013, 56 (11), 4816-20; (c) Chen, J. B.; Chern, T. R.; Wei, T. T.; Chen, C. C.; Lin, J. H.; Fang, J. M., Design and synthesis of dual-action inhibitors targeting histone deacetylases and 3-hydroxy-3-methylglutaryl coenzyme A reductase for cancer treatment. J. Med. Chem. 2013, 56 (9), 3645-55.
15. Rashmi, A.; Ashish, K.; N.S, G.; A.C, R., Quinazolinone: An overview. Int. Res. J. Pharm. 2011, 2 (12), 22-28.
16. Giri, R. S.; Thaker, H. M.; Giordano, T.; Williams, J.; Rogers, D.; Sudersanam, V.; Vasu, K. K., Design, synthesis and characterization of novel 2-(2,4-disubstituted-thiazole-5-yl)-3-aryl-3H-quinazoline-4-one derivatives as inhibitors of NF-kappaB and AP-1 mediated transcription activation and as potential anti-inflammatory agents. Eur. J. Med. Chem. 2009, 44 (5), 2184-9.
17. (a) Kabra, U.; Chopde, C.; Wadodkar, S., Design and synthesis of new derivatives of 3H-quinazolin-4-one as potential anticonvulsant agents. J. Heterocycl. Chem. 2011, 48 (6), 1351-1355; (b) Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J. P., CNS depressant and anticonvulsant activities of some novel 3-[5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Eur. J. Med. Chem. 2008, 43 (9), 1945-1954.
18. Kurogi, Y.; Inoue, Y.; Tsutsumi, K.; Nakamura, S.; Nagao, K.; Yoshitsugu, H.; Tsuda, Y., Synthesis and hypolipidemic activities of novel 2-[4-[diethoxyphosphoryl)methyl]phenyl]quinazolines and 4(3H)-quinazolinones. J. Med. Chem. 1996, 39 (7), 1433-7.
19. Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J. P., Synthesis and CNS depressant activity of some novel 3-[5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Eur. J. Med. Chem. 2008, 43 (1), 135-141.
20. Wang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q., Design, synthesis and antiviral activity of novel quinazolinones. Eur. J. Med. Chem. 2012, 53 (0), 275-282.
21. Desai, N. C.; Dodiya, A.; Shihory, N., Synthesis and antimicrobial activity of novel quinazolinone–thiazolidine–quinoline compounds. J. Saudi Chem. Soc. 2013, 17 (3), 259-267.
22. Cao, S.-L.; Feng, Y.-P.; Jiang, Y.-Y.; Liu, S.-Y.; Ding, G.-Y.; Li, R.-T., Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg. Med. Chem. Lett. 2005, 15 (7), 1915-1917.
23. Prince, H. M.; Bishton, M. J.; Johnstone, R. W., Panobinostat (LBH589): a potent pan-deacetylase inhibitor with promising activity against hematologic and solid tumors. Future Oncol. 2009, 5 (5), 601-12.
24. Rathkopf, D.; Wong, B. Y.; Ross, R. W.; Anand, A.; Tanaka, E.; Woo, M. M.; Hu, J.; Dzik-Jurasz, A.; Yang, W.; Scher, H. I., A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer. Cancer Chemother. Pharmacol. 2010, 66 (1), 181-9.
25. Ellis, L.; Pan, Y.; Smyth, G. K.; George, D. J.; McCormack, C.; Williams-Truax, R.; Mita, M.; Beck, J.; Burris, H.; Ryan, G.; Atadja, P.; Butterfoss, D.; Dugan, M.; Culver, K.; Johnstone, R. W.; Prince, H. M., Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin. Cancer Res. 2008, 14 (14), 4500-10.
26. Dickinson, M.; Ritchie, D.; DeAngelo, D. J.; Spencer, A.; Ottmann, O. G.; Fischer, T.; Bhalla, K. N.; Liu, A.; Parker, K.; Scott, J. W.; Bishton, M.; Prince, H. M., Preliminary evidence of disease response to the pan deacetylase inhibitor panobinostat (LBH589) in refractory Hodgkin Lymphoma. Br. J. Haematol. 2009, 147 (1), 97-101.
27. Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick, J. L., Triazabicyclodecene:  A Simple Bifunctional Organocatalyst for Acyl Transfer and Ring-Opening Polymerization of Cyclic Esters. J. Am. Chem. Soc. 2006, 128 (14), 4556-4557.
28. (a) Herrmann, W. A.; Brossmer, C.; Ofele, K.; Reisinger, C.-P.; Priermeier, T.; Beller, M.; Fischer, H., Palladacycles as Structurally Defined Catalysts for the Heck Olefination of Chloro- and Bromoarenes. Angew. Chem. Int. Ed. Engl. 1995, 34 (17), 1844-1848; (b) Barnard, C., Palladacycles: Synthesis, Characterization and Applications. Platinum Metals Rev. 2009, 53 (2), 67-68; (c) Feng, Y.-S.; Wu, W.; Xu, Z.-Q.; Li, Y.; Li, M.; Xu, H.-J., Pd-catalyzed decarboxylative cross-couplings of potassium malonate monoesters with aryl halides. Tetrahedron 2012, 68 (9), 2113-2120.
29. Butler, K. V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A. P., Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 2010, 132 (31), 10842-6.
30. Zhang, X.; Yuan, Z.; Zhang, Y.; Yong, S.; Salas-Burgos, A.; Koomen, J.; Olashaw, N.; Parsons, J. T.; Yang, X. J.; Dent, S. R.; Yao, T. P.; Lane, W. S.; Seto, E., HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell 2007, 27 (2), 197-213.
31. Walsh, D. M., Amyloid beta -Protein Fibrillogenesis. STRUCTURE AND BIOLOGICAL ACTIVITY OF PROTOFIBRILLAR INTERMEDIATES. J. Biol. Chem. 1999, 274 (36), 25945-25952.
32. Saadoun, S.; Papadopoulos, M. C.; Hara-Chikuma, M.; Verkman, A. S., Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 2005, 434 (7034), 786-92.
33. (a) Grozinger, C. M.; Hassig, C. A.; Schreiber, S. L., Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. USA 1999, 96 (9), 4868-73; (b) Haggarty, S. J.; Koeller, K. M.; Wong, J. C.; Grozinger, C. M.; Schreiber, S. L., Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA 2003, 100 (8), 4389-94.
34. Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida, M.; Wang, X. F.; Yao, T. P., HDAC6 is a microtubule-associated deacetylase. Nature 2002, 417 (6887), 455-458.
35. Bali, P.; Pranpat, M.; Bradner, J.; Balasis, M.; Fiskus, W.; Guo, F.; Rocha, K.; Kumaraswamy, S.; Boyapalle, S.; Atadja, P.; Seto, E.; Bhalla, K., Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. 2005, 280 (29), 26729-34.
36. Parmigiani, R. B.; Xu, W. S.; Venta-Perez, G.; Erdjument-Bromage, H.; Yaneva, M.; Tempst, P.; Marks, P. A., HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc. Natl. Acad. Sci. USA 2008, 105 (28), 9633-8.
37. (a) Hancock, W. W.; Akimova, T.; Beier, U. H.; Liu, Y.; Wang, L., HDAC inhibitor therapy in autoimmunity and transplantation. Ann. Rheum. Dis. 2012, 71 (Suppl 2), i46-i54; (b) Greer, J. M.; McCombe, P. A., The role of epigenetic mechanisms and processes in autoimmune disorders. Biologics 2012, 6, 307-27.
38. Zhang, B.; West, E. J.; Van, K. C.; Gurkoff, G. G.; Zhou, J.; Zhang, X.-M.; Kozikowski, A. P.; Lyeth, B. G., HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res. 2008, 1226 (0), 181-191.
39. d'Ydewalle, C.; Bogaert, E.; Van Den Bosch, L., HDAC6 at the Intersection of Neuroprotection and Neurodegeneration. Traffic 2012, 13 (6), 771-9.
40. d'Ydewalle, C.; Krishnan, J.; Chiheb, D. M.; Van Damme, P.; Irobi, J.; Kozikowski, A. P.; Vanden Berghe, P.; Timmerman, V.; Robberecht, W.; Van Den Bosch, L., HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat. Med. 2011, 17 (8), 968-74.
41. Sung, Y. M.; Lee, T.; Yoon, H.; DiBattista, A. M.; Song, J. M.; Sohn, Y.; Moffat, E. I.; Turner, R. S.; Jung, M.; Kim, J.; Hoe, H.-S., Mercaptoacetamide-based class II HDAC inhibitor lowers Aβ levels and improves learning and memory in a mouse model of Alzheimer's disease. Expt. Neurol. 2013, 239 (0), 192-201.
42. Haggarty, S. J.; Koeller, K. M.; Wong, J. C.; Butcher, R. A.; Schreiber, S. L., Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol. 2003, 10 (5), 383-396.
43. Schafer, S.; Saunders, L.; Eliseeva, E.; Velena, A.; Jung, M.; Schwienhorst, A.; Strasser, A.; Dickmanns, A.; Ficner, R.; Schlimme, S.; Sippl, W.; Verdin, E.; Jung, M., Phenylalanine-containing hydroxamic acids as selective inhibitors of class IIb histone deacetylases (HDACs). Bioorg. Med. Chem. 2008, 16 (4), 2011-33.
44. Schafer, S.; Saunders, L.; Schlimme, S.; Valkov, V.; Wagner, J. M.; Kratz, F.; Sippl, W.; Verdin, E.; Jung, M., Pyridylalanine-containing hydroxamic acids as selective HDAC6 inhibitors. ChemMedChem. 2009, 4 (2), 283-90.
45. Chen, Y.; Lopez-Sanchez, M.; Savoy, D. N.; Billadeau, D. D.; Dow, G. S.; Kozikowski, A. P., A series of potent and selective, triazolylphenyl-based histone deacetylases inhibitors with activity against pancreatic cancer cells and Plasmodium falciparum. J. Med. Chem. 2008, 51 (12), 3437-48.
46. Smil, D. V.; Manku, S.; Chantigny, Y. A.; Leit, S.; Wahhab, A.; Yan, T. P.; Fournel, M.; Maroun, C.; Li, Z.; Lemieux, A.-M.; Nicolescu, A.; Rahil, J.; Lefebvre, S.; Panetta, A.; Besterman, J. M.; Deziel, R., Novel HDAC6 isoform selective chiral small molecule histone deacetylase inhibitors. Bioorg. Med. Chem. Lett. 2009, 19 (3), 688-692.
47. Auzzas, L.; Larsson, A.; Matera, R.; Baraldi, A.; Deschenes-Simard, B.; Giannini, G.; Cabri, W.; Battistuzzi, G.; Gallo, G.; Ciacci, A.; Vesci, L.; Pisano, C.; Hanessian, S., Non-natural macrocyclic inhibitors of histone deacetylases: design, synthesis, and activity. J. Med. Chem. 2010, 53 (23), 8387-99.
48. Loredana Santo, T. H., Andrew L. Kung, Jen-Chieh Tseng, David Tamang,, HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 2012, 119, 2579-2589.
49. (a) Chern, J. W.; Tao, P. L.; Yen, M. H.; Lu, G. Y.; Shiau, C. Y.; Lai, Y. J.; Chien, S. L.; Chan, C. H., Studies on quinazolines. 5. 2,3-dihydroimidazo[1,2-c]quinazoline derivatives: a novel class of potent and selective alpha 1-adrenoceptor antagonists and antihypertensive agents. J. Med. Chem. 1993, 36 (15), 2196-207; (b) Chern, J. W.; Tao, P. L.; Wang, K. C.; Gutcait, A.; Liu, S. W.; Yen, M. H.; Chien, S. L.; Rong, J. K., Studies on quinazolines and 1,2,4-benzothiadiazine 1,1-dioxides. 8.1, 2 synthesis and pharmacological evaluation of tricyclic fused quinazolines and 1,2,4-benzothiadiazine 1,1-dioxides as potential alpha1-adrenoceptor antagonists. J. Med. Chem. 1998, 41 (17), 3128-41.
50. Verner, E. J., Mesylate salt of 5-(2-dimethylaminoethoxy)-1H-indole-2-carboxylic acid [3-(4-hydroxycarbamoylphenyl)prop-2-ynyl]amide. US 2007/0105939 A1 2007.
51. Simoes-Pires, C.; Zwick, V.; Nurisso, A.; Schenker, E.; Carrupt, P. A.; Cuendet, M., HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol. Neurodegener 2013, 8, 7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56749-
dc.description.abstract本論文主旨為設計與合成喹唑啉酮衍生物作為組蛋白去乙醯酶抑制劑進而作為具有潛能的抗癌試劑,甚至神經退化性疾病。
第一部分以喹唑啉-2,4-酮作為核心結構,並在其上加入該酵素表面作用官能基及鋅離子螫合基團。首先將鄰氨基苯甲酸或靛红酸酐經羰基化及環化反應後得到帶有酵素表面作用官能基的喹唑啉-2,4-酮主結構,之後將該主結構依序透過親核取代反應以及海克(Heck)偶合反應合成4-甲基肉桂酸的衍生物,最後含羧酸類官能基的中間體再被轉換成帶有酰基羥胺的目標化合物7a-e, 14a-g和18a-c;同時也利用了微波反應使得實驗進行得更有效率且方便。
根據酵素抑制實驗結果顯示,喹唑啉-2,4-酮衍生化合物7a-e, 14a-g和18a-c皆對第一、八、十一亞型的組蛋白去乙醯酶達到μM的抑制活性,且對第六亞型的組蛋白去乙醯酶有稍微的選擇性在sub-μM的效果,其相對於第一型組蛋白去乙醯酶多出8至107倍的抑制活性。接著透過細胞毒性的測試發現,喹唑啉-2,4-酮衍生化合物7a-e, 14a-g和18a-c對不同種類的癌細胞(胸、肺、胰臟、白血球)可達到μM的毒殺效果,化合物14c和14f更是可以達到sub-μM的毒殺效果。另外透過細胞轉移實驗,發現喹唑啉-2,4-酮衍生化合物可降低癌細胞的轉移能力且不影響正常細胞傷口癒合的情性。接著透過半胱氨酸天冬氨酸蛋白酶-3實驗發現喹唑啉-2,4-酮衍生化合物可以增加半胱氨酸天冬氨酸蛋白酶-3的活性。
第二部分根據Tubastatin A(高選擇性第六亞型之組蛋白去乙醯酶抑制劑)的結構,我們以咪唑喹唑啉-2-酮這種三環結構作為主架構。之後將該主結構透過親核取代反應與帶有酯類官能基的側鏈接上,再將酯類官能基轉換成帶有酰基羥胺的目標化合物26。
根據酵素抑制與細胞毒性實驗,化合物26表現出顯著的第六亞型組蛋白去乙醯酶抑制活性 (HDAC6 IC50 = 3.5 nM, HDAC1 IC50 = 1540 nM) 及相較於第一亞型組蛋白去乙醯酶多出446倍的選擇性且化合物26的IC50甚至低於Tubastatin A,另外透過細胞毒性測試化合物26對許多不同種癌細胞具低毒殺效果,此外化合物26在PC12細胞上也具有出促進神經軸突生長能力的效果。
zh_TW
dc.description.abstractBase on general structure of HDAC inhibitors, the aim of this thesis is the design and synthesis of quinazolinone derivatives as HDAC inhibitors for the treatment of variety of cancers such as breast, lung, pancreas and leukemia, and even neurodegenerative disorder.
In the first part, quinazolin-2, 4-dione core structure with different substitutions and length were connected with para-methyl styrene as the linker to attach hydroxamic acid group, finally afforded the target compounds 7a-e, 14a-g and 18a-c. Besides, microwave irradiation was used to make experiments more convenient and more efficient.
From the enzyme inhibitory data, compounds 7a-e, 14a-g and 18a-c showed micromolar (μM) range inhibition against HDAC1, 8, 11. However, all the compounds revealed the selectivity to HDAC6 at sub-μM range and the ratio against HDAC6 over HDAC1 is about 8 to 107-fold. In addition, compounds 7a-e, 14a-g and 18a-c were also tested on cytotoxicity assay. Through the MTT assay with different cancer cell lines, compounds 7a-e, 14a-g and 18a-c showed μM or sub-μM range activity against variety of cancer cells. Furthermore, compounds 7a, 14a, 14e-g and 18a-c were tested on the anti-migration analysis and Caspase-3 study, the data showed that our compounds can inhibit the migration on A549 cancer cells without affecting the wound healing on normal cell and increase the activation of Caspase-3, respectively.
In the second part, based on the studies of Tubastatin A, a highly selective HDAC6 inhibitor, It was designed and synthesized this kind of tricyclic structure with hydroxamic acid moiety as a novel potent selective HDAC 6 inhibitor. In this study, starting from imidazo [1,2-c]quinazolinone core structure which was previously defined in our lab. Further it was connected with benzyl group as the linker and attached with hydroxamate moiety to obtain our target compound 26.
From enzyme inhibitory data, compound 26 showed a high selectivity to HDAC6 at nanomolar (nM) range and the ratio for HDAC6 over HDAC1 is up to 446-fold, and the IC50 for HDAC6 is even lower than Tubastatin A. Further, the cytotoxicity data showed that compound 26 revealed low cytotoxic effect on a variety of cancers. In addition, compound 26 can significantly stimulated the neurite outgrowth in PC12 cell.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:46:04Z (GMT). No. of bitstreams: 1
ntu-103-R01423019-1.pdf: 12065083 bytes, checksum: 2f99ba29ed356aeb008bdf3f98c5d4eb (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 i
Abstract iii
Content v
List of Figure vi
List of Tables vii
List of Schemes viii
List of Abbreviation ix
Chapter 1. Introduction 1
1.1 Cancer and Epigenetic Modifications 1
1.2 Histone Deacetylases (HDAC) 2
1.3 HDAC Inhibitors 5
Chapter 2. Design and Synthesis of Quinazolin-2, 4-dione Derivatives as HDAC Inhibitors 8
2.1 Introduction and Rational Design 8
2.2 Synthetic Results and Discussion 10
2.3 Biological Activity 16
2.4 Experimental Section 27
2.4.1 Analytical Methods and Experimental Apparatus 27
2.4.2 Chemistry Synthesis 28
2.4.3 Enzymatic Assay 72
Chapter 3. Design and Synthesis of 2-Methylimidazo [1,2-c]quinazolin-5(6H)-one Derivatives as Selective HDAC6 Inhibitors 75
3.1 Introduction of HDAC6 75
3.2 The Development of Selective HDAC 6 Inhibitors 76
3.3 Rational Design 80
3.4 Synthetic Results and Discussion 81
3.5 Biological Activity 82
3.6 Experimental Section 85
3.6.1. Compound information 85
3.6.2. Enzyme assay 87
Chapter 4. Conclusion 90
Chapter 5. Reference 93
Chapter 6. Appendix for Spectrum of 1H NMR and 13CMR 103
dc.language.isoen
dc.subject去乙烯?抑制劑zh_TW
dc.subject第六亞型去乙烯沒抑制劑zh_TW
dc.subjectHDAC6 inhibitorsen
dc.subjectHDACen
dc.subjectHDAC6en
dc.subjectHDAC inhibitorsen
dc.title設計與合成喹唑啉酮類化合物做為組蛋白去乙醯酶抑制劑zh_TW
dc.titleDesign and Synthesis of Quinazolinone Derivatives as Potential Histone Deacetylase (HDAC) Inhibitorsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王光昭,顧記華,忻凌偉,梁碧惠
dc.subject.keyword去乙烯?抑制劑,第六亞型去乙烯沒抑制劑,zh_TW
dc.subject.keywordHDAC,HDAC6,HDAC inhibitors,HDAC6 inhibitors,en
dc.relation.page107
dc.rights.note有償授權
dc.date.accepted2014-08-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
11.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved