請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56739完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許輔 | |
| dc.contributor.author | Kai-Yen Wang | en |
| dc.contributor.author | 王開彥 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:45:25Z | - |
| dc.date.available | 2025-07-24 | |
| dc.date.copyright | 2020-09-17 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-24 | |
| dc.identifier.citation | 台灣質譜學會. 2015. 質譜分析技術原理與應用, p. 44. 廖寶琦主編. 全華圖書有限股份公司出版. 李雪如、邱國棟. 2013. 台灣芒果育種. 台灣果樹育種研討會專刊. 農業試驗所鳳山分所. p. 65-73. 林信伶、陳麗芳. 2009. 氣喘的藥物治療及舌下免疫療法. 藥學雜誌25:42-49. 莊老達. 2013. 台灣芒果產業現況及輔導措施. 提昇臺灣芒果產業價值鏈研討會專刊. p. 1-5 陳柏文. 2015. 躍上國際舞台的臺灣精品—芒果. 農政與農情. 278:11-15 Abdullah, F.I., L.S. Chua, and Z. Rahmat. 2017. Comparison of protein extraction methods for the leaves of ficus deltoidea. J. Fundam. Appl. Sci. 9:908-924. Albuhairi, S. and R. Rachid. 2020. Novel therapies for treatment of food allergy. Immunol. Allerg. Clin. North Am. 40:175-+. Andelkovic, U., T. Martinovic, and D. Josic. 2015. Foodomic investigations of food allergies. Curr. Opin. Food Sci. 4:92-98. Andjelkovic, U. and D. Josic. 2018. Mass spectrometry based proteomics as foodomics tool in research and assurance of food quality and safety. Trends in Food Science Technology 77:100-119. Bantscheff, M., M. Schirle, G. Sweetman, J. Rick, and B. Kuster. 2007. Quantitative mass spectrometry in proteomics: a critical review. Analytical and Bioanalytical Chemistry 389:1017-1031. Besler, M., U. Kasel, and G. Wichmann. 2002. Determination of hidden allergens in foods by immunoassays. Internet Symp Food Allergens 4:1-18. Boersema, P.J., R. Raijmakers, S. Lemeer, S. Mohammed, and A.J.R. Heck. 2009. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4:484-494. Chahrour, O., D. Cobice, and J. Malone. 2015. Stable isotope labelling methods in mass spectrometry-based quantitative-proteomics. J. Pharm. Biomed. Anal. 113:2-20. Chan, C.J., T. Richardo, and R.L.H. Lim. 2018. Current trend in immunotherapy for peanut allergy. Int. Rev. Immunol. 37:279-290. Chiung, Y.-M., B.-L. Lin, C.-H. Yeh, and C.-Y. Lin. 2000. Heat shock protein (hsp 70)-related epitopes are common allergenic determinants for barley and corn antigens. 21:297-300. Coombs, K.M. 2011. Quantitative proteomics of complex mixtures. Expert Rev. Proteomics 8:659-677. Costa, J., I. Mafra, I. Carrapatoso, and M. Oliveira. 2012. Almond allergens: molecular characterization, detection, and clinical relevance. Journal of Agricultural and Food Chemistry 60:1337-1349. Delong, R.K. and Q. Zhou. 2015. Experiment 6 - polymerase chain reaction (PCR), p. 59-66. In: R. K. Delong and Q. Zhou (eds.). Introductory Experiments on Biomolecules and their Interactions. Academic Press, Boston. Dong, H., Y.P. Xian, H.X. Li, Y.L. Wu, W.D. Bai, and X.F. Zeng. 2020. Analysis of heterocyclic aromatic amine profiles in Chinese traditional bacon and sausage based on ultrahigh-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS). Food Chemistry 310:10. Dube, M., K. Zunker, S. Neidhart, R. Carle, H. Steinhart, and A. Paschke. 2004. Effect of technological processing on the allergenicity of mangoes (Mangifera indica L.). Journal of Agricultural and Food Chemistry 52:3938-3945. El-Maghrabey, M.H., N. Kishikawa, and N. Kuroda. 2020. Current trends in isotope-coded derivatization liquid chromatographic-mass spectrometric analyses with special emphasis on their biomedical application. Biomed. Chromatogr. 34:29. Graham, F. and P.A. Eigenmann. 2018. Clinical implications of food allergen thresholds. Clin. Exp. Allergy 48:632-640. Han, Y.P., C.C. Lu, K. Zhang, S.S. Tian, E.G. Fan, L.X. Chen, X.W. He, and Y.K. Zhang. 2015. Quantitative characterization of histone post-translational modifications using a stable isotope dimethyl-labeling strategy. Analytical Methods 7:3779-3785. Heick, J., M. Fischer, S. Kerbach, U. Tamm, and B. Popping. 2011. Application of a liquid chromatography tandem mass spectrometry method for the simultaneous detection of seven allergenic foods in flour and bread and comparison of the method with commercially available ELISA test kits. J. AOAC Int. 94:1060-1068. Herrero, P., N. Cortes-Francisco, F. Borrull, J. Caixach, E. Pocurull, and R.M. Marce. 2014. Comparison of triple quadrupole mass spectrometry and Orbitrap high-resolution mass spectrometry in ultrahigh performance liquid chromatography for the determination of veterinary drugs in sewage: benefits and drawbacks. J. Mass Spectrom. 49:585-596. Holzhauser, T. 2018. Protein or no protein? opportunities for DNA-based detection of allergenic foods. Journal of Agricultural and Food Chemistry 66:9889-9894. Hsu, J.L. and S.H. Chen. 2016. Stable isotope dimethyl labelling for quantitative proteomics and beyond. Philosophical Transactions of the Royal Society A-Methematical Physical and Engineering Sciences. 374:20150364. Hsu, J.L., S.Y. Huang, N.H. Chow, and S.H. Chen. 2003. Stable-isotope dimethyl labeling for quantitative proteomics. Analytical Chem. 75:6843-6852 Huang, S.Y., M.H. Lin, Y.H. Chen, C.C. Lai, M.S. Lee, A.Y.C. Hu, and W.C. Sung. 2019. Application of stable isotope dimethyl labeling for MRM based absolute antigen quantification of influenza vaccine. J. Chromatogr. B 1104:40-48. Isaacson, T., C.M. Damasceno, R.S. Saravanan, Y. He, C. Catala, M. Saladie, and J.K. Rose. 2006. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769-74. Kim, E.H. and A.W. Burks. 2020. Food allergy immunotherapy: OIT and EPIT. Allergy 75:1337-1346. Koeberl, M., D. Clarke, and A.L. Lopata. 2014. Next generation of food allergen quantification using mass spectrometric systems. J. Proteome Res. 13:3499-3509. Lee, D.G., N.L. Houston, S.E. Stevenson, G.S. Ladics, S. McClain, L. Privalle, and J.J. Thelen. 2010. Mass spectrometry analysis of soybean seed proteins: optimization of gel-free quantitative workflow. Analytical Methods 2:1577-1583. Lesur, A. and B. Domon. 2015. Advances in high-resolution accurate mass spectrometry application to targeted proteomics. Proteomics 15:880-890. Leung, J. and S.E. Crowe. 2015. Food allergy and food intolerance, p. 76-81. In: D. M. Bier, J. Mann, D. H. Alpers, H. H. E. Vorster and M. J. Gibney (eds.). Nutrition for the Primary Care Provider. Vol. 111. Karger, Basel. Li, T.T., Y.M. Jalbani, G.L. Zhang, Z.Y. Zhao, Z.Y. Wang, X.Y. Zhao, and A.L. Chen. 2019. Detection of goat meat adulteration by real-time PCR based on a reference primer. Food Chemistry 277:554-557. Linacero, R., A. Sanchiz, I. Ballesteros, and C. Cuadrado. 2020. Application of real-time PCR for tree nut allergen detection in processed foods. Crit. Rev. Food Sci. Nutr. 60:1077-1093. Maldonado-Celis, M.E., E.M. Yahia, R. Bedoya, P. Landazuri, N. Loango, J. Aguillon, B. Restrepo, and J.C.G. Ospina. 2019. Chemical composition of mango (Mangifera indica L.) fruit: nutritional and phytochemical compounds. Front. Plant Sci. 10:21. Mehr, S. and T. Brown-Whitehorn. 2019. What do allergists in practice need to know about non-IgE-mediated food allergies. Ann. Allergy Asthma Immunol. 122:589-597. Monaci, L. and A. Visconti. 2009. Mass spectrometry-based proteomics methods for analysis of food allergens. TrAC Trends in Analytical Chemistry 28:581-591. Morisset, M., D.A. Moneret-Vautrin, G. Kanny, L. Guenard, E. Beaudouin, J. Flabbee, and R. Hatahet. 2003. Thresholds of clinical reactivity to milk, egg, peanut and sesame in immunoglobulin E-dependent allergies: evaluation by double-blind or single-blind placebo-controlled oral challenges. Clin. Exp. Allergy 33:1046-1051. Murch, S. 2004. Mechanisms in non-IgE mediated food allergy and the role of immune tolerance. Journal of Pediatric Gastroenterology and Nutrition 39:S550. Niu, L.J., H.Y. Yuan, F.P. Gong, X.L. Wu, and W. Wang. 2018. Protein extraction methods shape much of the extracted proteomes. Front. Plant Sci. 9:7. Nowak-Węgrzyn, A., Y. Katz, S.S. Mehr, and S. Koletzko. 2015. Non–IgE-mediated gastrointestinal food allergy. Journal of Allergy and Clinical Immunology 135:1114-1124. O'Neil, C. 2013. Mangoes are associated with better nutrient intake, diet quality, and levels of some cardiovascular risk factors: national health and nutrition examination survey. Journal of Nutrition Food Sciences 03. Pandey, A.K., R.K. Varshney, H.K. Sudini, and M.K. Pandey. 2019. An improved enzyme-linked immunosorbent assay (ELISA) based protocol using seeds for detection of five major peanut allergens Ara h 1, Ara h 2, Ara h 3, Ara h 6, and Ara h 8. Front Nutr 6:68-68. Paradela, A., M. Marcilla, R. Navajas, L. Ferreira, A. Ramos-Fernandez, M. Fernandez, J.F. Mariscotti, F. Garcia-del Portillo, and J.P. Albara. 2010. Evaluation of isotope-coded protein labeling (ICPL) in the quantitative analysis of complex proteomes. Talanta 80:1496-1502. Paschke, A., H. Kinder, K. Zunker, M. Wigotzki, H. Steinhart, R. Wessbecher, and I. Vieluf. 2001a. Characterization of cross-reacting allergens in mango fruit. Allergy 56:237-242. Paschke, A., H. Kinder, K. Zunker, M. Wigotzki, R. Wessbecher, D. Vieluf, and H. Steinhart. 2001b. Characterization of allergens in mango fruit and ripening dependence of the allergenic potency. Food and Agricultural Immunology 13:51-61. Pavokovic, D., B. Kriznik, and M. Krsnik-Rasol. 2012. Evaluation of protein extraction methods for proteomic analysis of non-model recalcitrant plant tissues. Croat. Chem. Acta 85:177-183. Platteau, C., T. Cucu, B. De Meulenaer, B. Devreese, M. De Loose, and I. Taverniers. 2011a. Effect of protein glycation in the presence or absence of wheat proteins on detection of soybean proteins by commercial ELISA. Food Addit. Contam. Part A-Chem. 28:127-135. Platteau, C., M. De Loose, B. De Meulenaer, and I. Taverniers. 2011b. Detection of allergenic ingredients using real-time PCR: a case study on hazelnut (Corylus avellena) and soy (Glycine max). Journal of Agricultural and Food Chemistry 59:10803-10814. Prado, M., I. Ortea, S. Vial, J. Rivas, P. Calo-Mata, and J. Barros-Velazquez. 2016. Advanced DNA- and protein-based methods for the detection and investigation of food allergens. Crit. Rev. Food Sci. Nutr. 56:2511-2542. Rindsjö, E. and A. Scheynius. 2010. Mechanisms of IgE-mediated allergy. Experimental Cell Research 316:1384-1389. Sakamoto, S., W. Putalun, S. Vimolmangkang, W. Phoolcharoen, Y. Shoyama, H. Tanaka, and S. Morimoto. 2018. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med 72:32-42. Sayers, R.L., P.E. Johnson, J.T. Marsh, P. Barran, H. Brown, and E.N.C. Mills. 2016. The effect of thermal processing on the behaviour of peanut allergen peptide targets used in multiple reaction monitoring mass spectrometry experiments. Analyst 141:4130-4141. Sheu, S.C., P.C. Tsou, Y.Y. Lien, and M.S. Lee. 2020. Rapid and specific detection of mango (Mangifera indica) in processed food using an isothermal nucleic acid amplification assay. Eur. Food Res. Technol. 246:759-766. Somayajula, D. and N. Desai. 2019. Optimization of protein extraction and proteomic studies in Cenchrus polystachion (L.) Schult. Heliyon 5:8. Sun, X.X., J.W. Zhao, Q.Y. Wane, G. Shi, J.J. Yang, and L. Ming. 2019. Prevalence of allergen sensitization among 15,534 patients with suspected allergic diseases in Henan Province, China. Asian Pac. J. Allergy Immunol. 37:57-64. Switzar, L., M. Giera, and W.M.A. Niessen. 2013. Protein digestion: an overview of the available techniques and recent developments. J. Proteome Res. 12:1067-1077. Tsai, W.C., T.C. Wu, B.L. Chiang, and H.W. Wen. 2017. Cloning, expression, and purification of recombinant major mango allergen Mani 1 in Escherichia coli. Protein Expression and Purification 130:35-43. van Hengel, A.J. 2007. Food allergen detection methods and the challenge to protect food-allergic consumers. Analytical and Bioanalytical Chemistry 389:111-118. Van Vlierberghe, K., M. Gavage, M. Dieu, P. Renard, T. Arnould, N. Gillard, K. Coudijzer, M. De Loose, K. Gevaert, and C. Van Poucke. 2020. Selection of universal peptide biomarkers for the detection of the allergen hazelnut in food trough a comprehensive, high resolution mass spectrometric (HRMS) based approach. Food Chemistry 309:10. Veigure, R., K. Lossmann, M. Hecht, E. Parman, R. Born, I. Leito, K. Herodes, and K. Kipper. 2020. Retention of acidic and basic analytes in reversed phase column using fluorinated and novel eluent additives for liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1613:8. Wang, N., X.L. Wu, L.X. Ku, Y.H. Chen, and W. Wang. 2016. Evaluation of three protein-extraction methods for proteome analysis of maize leaf midrib, a compound tissue rich in sclerenchyma cells. Front. Plant Sci. 7:12. Warren, C.M., J.L. Jiang, and R.S. Gupta. 2020. Epidemiology and burden of food allergy. Curr. Allergy Asthma Rep. 20:9. Waserman, S., P. Bégin, and W. Watson. 2018. IgE-mediated food allergy. Allergy, Asthma Clinical Immunology 14:55. Winter, D., J. Seidler, S. Ziv-Lehrman, Y. Shiloh, and W.D. Lehmann. 2009. Simultaneous identification and quantification of proteins by differential O-16/O-18 labeling and UPLC-MS/MS applied to mouse cerebellar phosphoproteome following irradiation. Anticancer Res. 29:4949-4958. Wu, T.C., T.C. Tsai, C.F. Huang, F.Y. Chang, C.C. Lin, I.F. Huang, C.H. Chu, B.H. Lau, L. Wu, H.J. Peng, and R.B. Tang. 2012. Prevalence of food allergy in Taiwan: a questionnaire-based survey. Intern. Med. J. 42:1310-1315. Yong, S.B., C.C. Wu, Y.C. Tzeng, W.C. Hung, and K.D. Yang. 2013. Different profiles of allergen sensitization in different ages and geographic areas in Changhua, Taiwan. J. Microbiol. Immunol. Infect. 46:295-301. Zhu, W.H., J.W. Smith, and C.M. Huang. 2010. Mass spectrometry-based label-free quantitative proteomics. J. Biomed. Biotechnol.:6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56739 | - |
| dc.description.abstract | 食物過敏是重要的食安議題之一,建立一套可靠的過敏原定量方法,在食品安全管理上是必需的。因此,開發一套穩定、準確的過敏原分析方法是非常重要的。以質譜法作為過敏原檢測之方式,具有高穩定度、高準確度等優點,故近年來逐漸受到重視。芒果 (Mangifera indica) 為我國常見的水果,且其亦為我國主要致敏性水果之一,但目前研究對芒果過敏原身分及蛋白質序列了解較少,本研究選擇以愛文芒果為目標,以質譜儀進行過敏原身份鑑定與定量分析。結果分為三部分:第一部分,為取得愛文芒果過敏原的完整蛋白質序列以設計代表胜肽,首先建立愛文芒果轉錄體資料庫。實驗上以次世代定序方式進行愛文芒果轉錄體定序,進行組裝後得到 87,245 條 contigs,經註解得 47,921 個 unigene,再將基因序列轉譯後,即可得到愛文芒果的蛋白質序列資料庫,作為過敏原身份鑑定比對之用。第二部分,進行愛文芒果高致敏性蛋白質身份鑑定。切下 SDS-PAGE 上分子量接近 30 kDa 與 67 kDa 位置之蛋白質進行膠內消化及質譜分析,並將分析結果與第一部分建立之資料庫進行比對以確認其身份,結果顯示愛文芒果之 30 kDa 過敏原 Man i 2 很可能為 chitinase,而 67 kDa 過敏原則很可能為 heat shock protein 70 kDa (hsp70)。第三部分,建立愛文芒果過敏原質譜定量平台。從質譜分析結果與前人研究中選擇chitinase、GAPDH 與 hsp70 代表胜肽,以二甲基標記製備內標準品與外標準品,並建立定量平台,氫標記之 chitinase、GAPDH 及 hsp70 代表胜肽 (chitinase_H、GAPDH_H 及 hsp70_H) 定量極限分別為 4.5 ng/mL、22.5 ng/mL 及 0.225 ng/mL,而 chitinase_H 及 hsp70_H 三個確效濃度之回收率分別為 90.4%-91.6%及 88.7%-97.6%,將此法用於定量愛文芒果鮮果樣品中過敏原含量,結果顯示三種過敏原於愛文芒果中之濃度皆低於本方法之偵測極限。本研究成功建立愛文芒果轉錄體資料庫,及成功對 2 個芒果中高致敏性蛋白質進行身份鑑定,該轉錄體資料庫可供未來愛文芒果蛋白質體學相關研究使用。同時建立以質譜儀為基礎之芒果過敏原定量法。本研究可作為未來食品過敏原方法開發之參考,並應用於各國以提升食品安全。 | zh_TW |
| dc.description.abstract | Food allergy is an important food safety issues in the world, therefore, a reliable allergen quantification method is required to enforce the food control. With high precision and accuracy, mass spectrometry-based method have been applied for allergen detection. Mango (Mangifera indica) is one of the major allergenic food in Taiwan. Nevertheless, research on identity and protein sequence of mango allergens is limited. In this study, we choose Irwin mango as a target, and identification of the allergens and the establishment of MS-based allergen quantification platform were carried out. Our results consists of three parts. In the first part, establishment of transcriptome database of Irwin mango was performed. In order to obtain the full sequence of Irwin mango and design signature peptides, transcriptome database of Irwin mango was established by next generation sequencing. After assembly process, there were 87,245 contigs obtained, which were annotated to 47,921 unigenes. The nucleotide sequences of unigenes were translated to amino acid sequences as a reference for subsequent protein identification. In the second part, the identification of two mango allergens was performed. Proteins located at 30 kDa and 67 kDa on SDS-PAGE were subjected to in-gel digestion and mass spectrometry (MS) analysis. The results showed that the 30 kDa and 67kDa allergen of Irwin mango were identified as chitinase and heat shock protein 70 kDa (hsp70). In the third part, a MS- based quantification method for Irwin mango allergen was established. Signature peptides of chitinase and hsp70 were selected from results of MS analysis, and signature peptide of GAPDH was determined according to previous study. Dimethyl labeling was used to produce internal and external standard, and the H-labeled standards were named as chitinase_H, GAPDH_H and hsp70_H. Limit of quantification of chitinase_H, GAPDH_H and hsp70_H was 4.5 ng/mL, 22.5 ng/mL and 0.225 ng/mL, respectively. Recovery of chitinase_H and hsp70_H was 90.4%-91.6% and 88.7%-97.6%. Finally, the established method was applied to mango fruit, and the results showed that the concentration of these allergens was below limit of detection. In conclusion, we established the transcriptome database of Irwin mango and identified 2 major allergens of Irwin mango. Besides, the transcriptome database could be used for future research on mango proteomic. We also developed a MS-based method for the quantification of mango allergen. Our study could not only be an example of analytical method development, but also could be use in the world to improve food safety. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:45:25Z (GMT). No. of bitstreams: 1 U0001-2407202013064800.pdf: 6852301 bytes, checksum: 9a98e9034dbbfe140d5e0c9a683c58be (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 ... i 誌謝 ... ii Abstract ... v 大綱 ... vii 表目錄 ... x 圖目錄 ... xi 壹、前言 ... 12 一、食物過敏 (food allergy) ... 12 (一)食物過敏介紹 ... 12 (二)過敏原分析方法 ... 15 二、芒果 ... 19 (一)品種 ... 19 (二)產量與產值 ... 20 (三)加工製品 ... 20 (四)營養價值 ... 20 (五)芒果過敏 ... 20 三、萃取方法介紹 ... 22 (一)苯酚萃取法 (phenol extraction method) ... 22 (二)三氯乙酸/丙酮萃取法 (trichloroacetic acid/acetone extraction method, TCA/A) ... 22 四、質譜技術 ... 23 (一)全掃描模式 (full scan mode) ... 23 (二)碎片離子掃描模式 (product ion scan mode) ... 23 (三)選擇離子監控模式 (selected ion monitoring mode, SIM mode) ... 23 (四)選擇反應監測 (selected reaction monitoring, SRM) ... 24 (五)多重反應監測 (multiple reaction monitoring, MRM) ... 24 五、胜肽標記方式 ... 24 (一)ICAT (isotope-coded affinity tag) ... 25 (二)SILAC (stable isotope labeling by amino acid) ... 25 (三)18O 酵素標記 ... 25 (四)ICPL (isotope coded protein labeling) ... 25 (五)iTRAQ (isobaric tags for relative and absolute quantification) ... 26 六、穩定同位素二甲基標記法 ... 26 七、研究動機 ... 28 貳、材料與方法 ... 30 一、藥品 ... 30 二、器材 ... 30 三、實驗方法 ... 31 (一)芒果果泥製作法 ... 31 (二)芒果蛋白質萃取法 ... 31 (三)Bradford 蛋白質定量法 ... 33 (四)SDS-PAGE 蛋白質定性法 ... 33 (五)胰蛋白酶蛋白質消化法 ... 34 (六)芒果樣品二甲基標記法 ... 35 (七)Zip tip 樣品除鹽法 ... 35 (八)代表胜肽標記法 ... 35 (九)代表胜肽合成 ... 35 (十)超高效液相層析三重四極柱質譜儀參數設定 ... 36 (十一)分析方法確效 ... 36 (十二)愛文芒果轉錄體分析 ... 37 參、實驗結果 ... 38 一、芒果蛋白質的萃取方法 ... 38 二、芒果過敏原身份鑑定 ... 38 (一)轉錄體定序 ... 39 (二)蛋白質身份鑑定 ... 39 三、建立芒果蛋白質定量分析方法 ... 40 (一)代表胜肽挑選 ... 40 (二)穩定同位素二甲基標記 ... 41 (三)MS 參數設定 ... 42 (四)LC 參數設定 ... 43 (五)檢量線 ... 44 (六)方法確效試驗 ... 45 (七)愛文芒果過敏原定量結果 ... 45 肆、討論 ... 47 (一)芒果蛋白質萃取法討論 ... 47 (二)切膠消化討論 ... 47 (三)愛文芒果蛋白質身份鑑定 ... 48 (四)代表胜肽選擇討論 ... 49 (五)液相層析方法討論 ... 49 (六)確效方法討論 ... 50 (七)定量結果討論 ... 52 伍、結論與未來展望 ... 54 陸、參考文獻 ... 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蛋白質身份鑑定 | zh_TW |
| dc.subject | 過敏原定量 | zh_TW |
| dc.subject | 三重四極柱質譜儀 | zh_TW |
| dc.subject | 二甲基標記 | zh_TW |
| dc.subject | 愛文芒果 | zh_TW |
| dc.subject | dimethyl labeling | en |
| dc.subject | protein identification | en |
| dc.subject | allergen quantification | en |
| dc.subject | QqQ MS | en |
| dc.subject | Irwin mango | en |
| dc.title | 以二甲基標記結合質譜技術進行芒果過敏原之定性與定量分析 | zh_TW |
| dc.title | Qualitative and quantitative analysis of mango (Mangifera indica) allergens using dimethyl labeling coupled with mass spectrometry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇南維,周志輝,繆希椿 | |
| dc.subject.keyword | 蛋白質身份鑑定,過敏原定量,三重四極柱質譜儀,二甲基標記,愛文芒果, | zh_TW |
| dc.subject.keyword | protein identification,allergen quantification,QqQ MS,Irwin mango,dimethyl labeling, | en |
| dc.relation.page | 120 | |
| dc.identifier.doi | 10.6342/NTU202001820 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-24 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2407202013064800.pdf 未授權公開取用 | 6.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
