Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56720
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳基旺(Ji-Wang Chern)
dc.contributor.authorKang-Li Wangen
dc.contributor.author王康力zh_TW
dc.date.accessioned2021-06-16T05:44:13Z-
dc.date.available2019-10-20
dc.date.copyright2014-10-20
dc.date.issued2013
dc.date.submitted2014-08-11
dc.identifier.citation(1) Taiwan Department of Health. National Death Statistics of 2011, 2012.
(2) Ferlay, J.; Shin, H.-R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. M. Estimates of Worldwide Burden of Cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917.
(3) Arora, A.; Scholar, E. M. Role of Tyrosine Kinase Inhibitors in Cancer Therapy. J. phamacology Exp. Ther. 2005, 315, 971–979.
(4) Hanahan, D.; Weinberg, R. A.; Francisco, S. The Hallmarks of Cancer Review University of California at San Francisco. Cell 2000, 100, 57–70.
(5) Greten, T. F.; Korangy, F.; Manns, M. P.; Malek, N. P. Molecular Therapy for the Treatment of Hepatocellular Carcinoma. Br. J. Cancer 2009, 100, 19–23.
(6) Jiang, H. Overview of Gefitinib in Non-Small Cell Lung Cancer: An Asian Perspective. Jpn. J. Clin. Oncol. 2009, 39, 137–150.
(7) Pao, W.; Miller, V. a; Politi, K. a; Riely, G. J.; Somwar, R.; Zakowski, M. F.; Kris, M. G.; Varmus, H. Acquired Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain. PLoS Med. 2005, 2, e73.
(8) Avizienyte, E.; Ward, R. a; Garner, A. P. Comparison of the EGFR Resistance Mutation Profiles Generated by EGFR-Targeted Tyrosine Kinase Inhibitors and the Impact of Drug Combinations. Biochem. J. 2008, 415, 197–206.
(9) Gahr, S.; Wissniowski, T.; Zopf, S.; Strobel, D.; Pustowka, A.; Ocker, M. Combination of the Deacetylase Inhibitor Panobinostat and the Multi-Kinase Inhibitor Sorafenib for the Treatment of Metastatic Hepatocellular Carcinoma - Review of the Underlying Molecular Mechanisms and First Case Report. J. Cancer 2012, 3, 158–165.
(10) Marino, A.-M.; Sofiadis, A.; Baryawno, N.; Johnsen, J. I.; Larsson, C.; Vukojević, V.; Ekstrom, T. J. Enhanced Effects by 4-Phenylbutyrate in Combination with RTK Inhibitors on Proliferation in Brain Tumor Cell Models. Biochem. Biophys. Res. Commun. 2011, 411, 208–212.
(11) Lemaire, M.; Fristedt, C.; Agarwal, P.; Menu, E.; Van Valckenborgh, E.; De Bruyne, E.; Osterborg, A.; Atadja, P.; Larsson, O.; Axelson, M.; Van Camp, B.; Jernberg-Wiklund, H.; Vanderkerken, K. The HDAC Inhibitor LBH589 Enhances the Antimyeloma Effects of the IGF-1RTK Inhibitor Picropodophyllin. Clin. Cancer Res. 2012, 18, 2230–2239.
(12) Glaser, K. B.; Li, J.; Staver, M. J.; Wei, R.-Q.; Albert, D. H.; Davidsen, S. K. Role of Class I and Class II Histone Deacetylases in Carcinoma Cells Using siRNA. Biochem. Biophys. Res. Commun. 2003, 310, 529–536.
(13) Kim, H.-J.; Bae, S.-C. Histone Deacetylase Inhibitors: Molecular Mechanisms of Action and Clinical Trials as Anti-Cancer Drugs. Am. J. Transl. Res. 2011, 3, 166–79.
(14) Kramer, O. H.; Knauer, S. K.; Greiner, G.; Jandt, E.; Reichardt, S.; Guhrs, K.-H.; Stauber, R. H.; Bohmer, F. D.; Heinzel, T. A Phosphorylation-Acetylation Switch Regulates STAT1 Signaling. Genes Dev. 2009, 23, 223–235.
(15) Mahboobi, S.; Dove, S.; Sellmer, A.; Winkler, M.; Eichhorn, E.; Pongratz, H.; Ciossek, T.; Baer, T.; Maier, T.; Beckers, T. Design of Chimeric Histone Deacetylase- and Tyrosine Kinase-Inhibitors: a Series of Imatinib Hybrides as Potent Inhibitors of Wild-Type and Mutant BCR-ABL, PDGF-Rbeta, and Histone Deacetylases. J. Med. Chem. 2009, 52, 2265–2279.
(16) Mahboobi, S.; Sellmer, A.; Winkler, M.; Eichhorn, E.; Pongratz, H.; Ciossek, T.; Baer, T.; Maier, T.; Beckers, T. Novel Chimeric Histone Deacetylase Inhibitors: a Series of Lapatinib Hybrides as Potent Inhibitors of Epidermal Growth Factor Receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2), and Histone Deacetylase Activity. J. Med. Chem. 2010, 53, 8546–8555.
(17) Beckers, T.; Mahboobi, S.; Sellmer, A.; Winkler, M.; Eichhorn, E.; Pongratz, H.; Maier, T.; Ciossek, T.; Baer, T.; Kelter, G.; Fiebig, H.-H.; Schmidt, M. Chimerically Designed HDAC- and Tyrosine Kinase Inhibitors. A Series of Erlotinib Hybrids as Dual-Selective Inhibitors of EGFR, HER2 and Histone Deacetylases. Med. Chem. Comm. 2012, 3, 829–835.
(18) Cai, X.; Zhai, H.-X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C.-J.; Bao, R.; Qian, C. Discovery of 7-(4-(3-Ethynylphenylamino)-7-Methoxyquinazolin-6-Yloxy)-N-Hydroxyheptanamide (CUDc-101) as a Potent Multi-Acting HDAC, EGFR, and HER2 Inhibitor for the Treatment of Cancer. J. Med. Chem. 2010, 53, 2000–2009.
(19) Lai, C.-J.; Bao, R.; Tao, X.; Wang, J.; Atoyan, R.; Qu, H.; Wang, D.-G.; Yin, L.; Samson, M.; Forrester, J.; Zifcak, B.; Xu, G.-X.; DellaRocca, S.; Zhai, H.-X.; Cai, X.; Munger, W. E.; Keegan, M.; Pepicelli, C. V; Qian, C. CUDC-101, a Multitargeted Inhibitor of Histone Deacetylase, Epidermal Growth Factor Receptor, and Human Epidermal Growth Factor Receptor 2, Exerts Potent Anticancer Activity. Cancer Res. 2010, 70, 3647–3656.
(20) Khanwelkar, R. R.; Chen, G. S.; Wang, H.-C.; Yu, C.-W.; Huang, C.-H.; Lee, O.; Chen, C.-H.; Hwang, C.-S.; Ko, C.-H.; Chou, N.-T.; Lin, M.-W.; Wang, L.-M.; Chen, Y.-C.; Hseu, T.-H.; Chang, C.-N.; Hsu, H.-C.; Lin, H.-C.; Shih, Y.-C.; Chou, S.-H.; Tseng, H.-W.; Liu, C.-P.; Tu, C.-M.; Hu, T.-L.; Tsai, Y.-J.; Chern, J.-W. Synthesis and Structure-Activity Relationship of 6-Arylureido-3-Pyrrol-2-Ylmethylideneindolin-2-One Derivatives as Potent Receptor Tyrosine Kinase Inhibitors. Bioorg. Med. Chem. 2010, 18, 4674–4686.
(21) Gediya, L. K.; Chopra, P.; Purushottamachar, P.; Maheshwari, N.; Njar, V. C. O. A New Simple and High-Yield Synthesis of Suberoylanilide Hydroxamic Acid and Its Inhibitory Effect Alone or in Combination with Retinoids on Proliferation of Human Prostate Cancer Cells. J. Med. Chem. 2005, 48, 5047–5051.
(22) Dallavalle, S.; Cincinelli, R.; Nannei, R.; Merlini, L.; Morini, G.; Penco, S.; Pisano, C.; Vesci, L.; Barbarino, M.; Zuco, V.; De Cesare, M.; Zunino, F. Design, Synthesis, and Evaluation of Biphenyl-4-yl-Acrylohydroxamic Acid Derivatives as Histone Deacetylase (HDAC) Inhibitors. Eur. J. Med. Chem. 2009, 44, 1900–1912.
(23) Alcock, S. G.; Baldwin, J. E.; Bohlmann, R.; Harwood, L. M.; Seeman, J. I. On the Conjugative Isomerizations of beta, gamma-Unsaturated Esters. Stereochemical Generalizations and Predictions for 1,3-Prototropic Shifts Under Basic Conditions. J. Org. Chem. 1985, 50, 3526–3535.
(24) Upadhyaya, D. J.; Barge, A.; Stefania, R.; Cravotto, G. Efficient, Solventless N-Boc Protection of Amines Carried Out at Room Temperature Using Sulfamic Acid as Recyclable Catalyst. Tetrahedron Lett. 2007, 48, 8318–8322.
(25) Lewis, R. T.; Bode, C. M.; Choquette, D. M.; Potashman, M.; Romero, K.; Stellwagen, J. C.; Teffera, Y.; Moore, E.; Whittington, D. a; Chen, H.; Epstein, L. F.; Emkey, R.; Andrews, P. S.; Yu, V. L.; Saffran, D. C.; Xu, M.; Drew, A.; Merkel, P.; Szilvassy, S.; Brake, R. L. The Discovery and Optimization of a Novel Class of Potent, Selective, and Orally Bioavailable Anaplastic Lymphoma Kinase (ALK) Inhibitors with Potential Utility for the Treatment of Cancer. J. Med. Chem. 2012, 55, 6523–6540.
(26) Lin, E.; Li, L.; Guan, Y.; Soriano, R.; Rivers, C. S.; Mohan, S.; Pandita, A.; Tang, J.; Modrusan, Z. Exon Array Profiling Detects EML4-ALK Fusion in Breast, Colorectal, and Non-Small Cell Lung Cancers. Mol. Cancer Res. 2009, 7, 1466–1476.
(27) Mosse, Y. P.; Laudenslager, M.; Longo, L.; Cole, K. a; Wood, A.; Attiyeh, E. F.; Laquaglia, M. J.; Sennett, R.; Lynch, J. E.; Perri, P.; Laureys, G.; Speleman, F.; Kim, C.; Hou, C.; Hakonarson, H.; Torkamani, A.; Schork, N. J.; Brodeur, G. M.; Tonini, G. P.; Rappaport, E.; Devoto, M.; Maris, J. M. Identification of ALK as a Major Familial Neuroblastoma Predisposition Gene. Nature 2008, 455, 930–935.
(28) Sukov, W. R.; Hodge, J. C.; Lohse, C. M.; Akre, M. K.; Leibovich, B. C.; Thompson, R. H.; Cheville, J. C. ALK Alterations in Adult Renal Cell Carcinoma: Frequency, Clinicopathologic Features and Outcome in a Large Series of Consecutively Treated Patients. Mod. Pathol. 2012, 25, 1516–1525.
(29) Sugawara, E.; Togashi, Y.; Kuroda, N.; Sakata, S.; Hatano, S.; Asaka, R.; Yuasa, T.; Yonese, J.; Kitagawa, M.; Mano, H.; Ishikawa, Y.; Takeuchi, K. Identification of Anaplastic Lymphoma Kinase Fusions in Renal Cancer: Large-Scale Immunohistochemical Screening by the Intercalated Antibody-Enhanced Polymer Method. Cancer 2012, 118, 4427–4436.
(30) Murugan, A. K.; Xing, M. Anaplastic Thyroid Cancers Harbor Novel Oncogenic Mutations of the ALK Gene. Cancer Res. 2011, 71, 4403–4411.
(31) Mosse, Y. P.; Wood, A.; Maris, J. M. Inhibition of ALK Signaling for Cancer Therapy. Clin. Cancer Res. 2009, 15, 5609–5614.
(32) George, R. E.; Sanda, T.; Hanna, M.; Frohling, S.; Luther, W.; Zhang, J.; Ahn, Y.; Zhou, W.; London, W. B.; McGrady, P.; Xue, L.; Zozulya, S.; Gregor, V. E.; Webb, T. R.; Gray, N. S.; Gilliland, D. G.; Diller, L.; Greulich, H.; Morris, S. W.; Meyerson, M.; Look, a T. Activating Mutations in ALK Provide a Therapeutic Target in Neuroblastoma. Nature 2008, 455, 975–978.
(33) Gleason, B. C.; Hornick, J. L. Inflammatory Myofibroblastic Tumours: Where Are We Now? J. Clin. Pathol. 2008, 61, 428–437.
(34) Soda, M.; Choi, Y. L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the Transforming EML4-ALK Fusion Gene in Non-Small-Cell Lung Cancer. Nature 2007, 448, 561–566.
(35) Rikova, K.; Guo, A.; Zeng, Q.; Possemato, A.; Yu, J.; Haack, H.; Nardone, J.; Lee, K.; Reeves, C.; Li, Y.; Hu, Y.; Tan, Z.; Stokes, M.; Sullivan, L.; Mitchell, J.; Wetzel, R.; Macneill, J.; Ren, J. M.; Yuan, J.; Bakalarski, C. E.; Villen, J.; Kornhauser, J. M.; Smith, B.; Li, D.; Zhou, X.; Gygi, S. P.; Gu, T.-L.; Polakiewicz, R. D.; Rush, J.; Comb, M. J. Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer. Cell 2007, 131, 1190–1203.
(36) Shaw, A. T.; Yeap, B. Y.; Mino-Kenudson, M.; Digumarthy, S. R.; Costa, D. B.; Heist, R. S.; Solomon, B.; Stubbs, H.; Admane, S.; McDermott, U.; Settleman, J.; Kobayashi, S.; Mark, E. J.; Rodig, S. J.; Chirieac, L. R.; Kwak, E. L.; Lynch, T. J.; Iafrate, a J. Clinical Features and Outcome of Patients with Non-Small-Cell Lung Cancer Who Harbor EML4-ALK. J. Clin. Oncol. 2009, 27, 4247–4253.
(37) Yano, T.; Haro, A.; Shikada, Y.; Maruyama, R.; Maehara, Y. Non-Small Cell Lung Cancer in Never Smokers as a Representative “Non-Smoking-Associated Lung Cancer”: Epidemiology and Clinical Features. Int. J. Clin. Oncol. 2011, 16, 287–293.
(38) Cui, J. J.; Tran-Dube, M.; Shen, H.; Nambu, M.; Kung, P.-P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R. S.; Edwards, M. P. Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal-Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK). J. Med. Chem. 2011, 54, 6342–6363.
(39) Shaw, A. T.; Yasothan, U.; Kirkpatrick, P. Crizotinib. Nat. Rev. Drug Discov. 2011, 10, 897–898.
(40) Sasaki, T.; Okuda, K.; Zheng, W.; Butrynski, J.; Capelletti, M.; Wang, L.; Gray, N. S.; Wilner, K.; Christensen, J. G.; Demetri, G.; Shapiro, G. I.; Rodig, S. J.; Eck, M. J.; Janne, P. a. The Neuroblastoma-Associated F1174L ALK Mutation Causes Resistance to an ALK Kinase Inhibitor in ALK-Translocated Cancers. Cancer Res. 2010, 70, 10038–43.
(41) Choi, Y. L.; Soda, M.; Yamashita, Y.; Ueno, T.; Takashima, J.; Nakajima, T.; Yatabe, Y.; Takeuchi, K.; Hamada, T.; Haruta, H.; Ishikawa, Y.; Kimura, H.; Mitsudomi, T.; Tanio, Y.; Mano, H. EML4-ALK Mutations in Lung Cancer That Confer Resistance to ALK Inhibitors. N. Engl. J. Med. 2010, 363, 1734–1739.
(42) Neal, J. W.; Sequist, L. V. Exciting New Targets in Lung Cancer Therapy: ALK, IGF-1R, HDAC, and Hh. Curr. Treat. Options Oncol. 2010, 11, 36–44.
(43) Wang, H.; Yu, N.; Chen, D.; Chi, K.; Lee, L.; Lye, P. L.; Wei, J.; Chang, W.; Deng, W.; Chi, M.; Ng, Y.; Lu, T.; Khoo, M. L.; Poulsen, A.; Sangthongpitag, K.; Wu, X.; Hu, C.; Goh, K. C.; Wang, X.; Fang, L.; Goh, K. L.; Khng, H. H.; Goh, S. K.; Yeo, P.; Liu, X.; Bonday, Z.; Wood, J. M.; Dymock, B. W.; Ethirajulu, K.; Sun, E. T. Discovery of (2E)-3-{2-Butyl-1-[2-(dimethylamino)ethyl]-1H-Benzimidazol-5-yl } -N-Hydroxyacrylamide ( SB939 ), an Orally Active Histone Deacetylase Inhibitor with a Superior Preclinical Profile. J. Med. Chem. 2011, 54, 4694–4720.
(44) Bode, C. M.; Cheng, A. C.; Choqutte, D.; Lewis, R. T.; Potashman, M. H.; Romero, K.; Stellwagen, J. C.; Wittington, D. A. Benzimidazole and Azabenzimidazole Compounds That Inhibit Anaplastic Lymphoma Kinase. PCT Int. Appl. WO 2012018668 2012.
(45) Doebele, R. C.; Pilling, A. B.; Aisner, D. L.; Kutateladze, T. G.; Le, A. T.; Weickhardt, A. J.; Kondo, K. L.; Linderman, D.; Heasley, L. E; Franklin, W. A.; Varella-Garcia, M.; Camidge, D. R. Mechanisms of Resistance to Crizotinib in Patients with ALK Gene Rearranged Non-Small Cell Lung Cancer. Clin. Cancer Res. 2012, 18, 1472–1482.
(46) Guengerich, F. P. Cytochrome P450 and Chemical Toxicology. Chem. Res. Toxicol. 2008, 21, 70–83.
(47) Sanguinetti, M. C.; Tristani-Firouzi, M. hERG Potassium Channels and Cardiac Arrhythmia. Nature 2006, 440, 463–469.
(48) Kortmann, U.; McAlpine, J. N.; Xue, H.; Guan, J.; Ha, G.; Tully, S.; Shafait, S.; Lau, A.; Cranston, A. N.; O’Connor, M. J.; Huntsman, D. G.; Wang, Y.; Gilks, C. B. Tumor Growth Inhibition by Olaparib in BRCA2 Germline-Mutated Patient-Derived Ovarian Cancer Tissue Xenografts. Clin. Cancer Res. 2011, 17, 783–791.
(49) Yamori, T.; Sato, S.; Chikazawa, H.; Kadota, T. Anti-Tumor Efficacy of Paclitaxel Against Human Ling Cancer Xenografts. Japanese J. Cancer Res. 1997, 88, 1205–1210.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56720-
dc.description.abstract本研究的宗旨是設計與合成新一代的多靶點抗癌藥物,以克服單靶點標靶治療已面臨的許多問題。
目標化合物的設計理念為將兩類不同功能的藥效基團合併,使之具有雙重活性。第二章中,以多重受體酪氨酸激酶抑制劑1為先導化合物,首先經由羥醛縮合得到帶有吡咯的二氫吲哚-2-酮主結構,再經由海克(Heck)反應加上帶有酯類官能基的側鍊,最後將酯轉換為帶有異羥肟酸官能基的目標化合物(12、13、19與23)。目標化合物被發現具有受器酪胺酸脢與組蛋白去乙醯酶雙效抑制活性,後續的生物活性評估更顯示其具有與單靶點藥物相當或更好的抗癌細胞活性,證實了這樣的化合物設計是有效的。
第三章以兩個苯並咪唑化合物為先導化合物,化合物35為間變性淋巴瘤激酶抑制劑,36則為組蛋白去乙醯酶抑制劑,設計出結合兩者結構的間變性淋巴瘤激酶與組蛋白去乙醯酶雙效抑制劑。依序由芳香環取代反應、海克反應將兩個側鍊接上硝基苯環,再以鐵還原硝基後與異硫氰酸酯化合物或溴化氰合環形成苯並咪唑主結構,最後將酯轉換為帶有異羥肟酸官能基的目標化合物(52、59、65、69與72)。生物活性評估結果顯示目標化合物不僅可以同時抑制間變性淋巴瘤激酶與組蛋白去乙醯酶,更可以抑制多種造成抗藥性的突變間變性淋巴瘤激酶。其中具有最佳細胞活性的目標化合物59更在動物試驗中展現良好的活性。這系列苯並咪唑衍生物因具有好的生物活性以及克服抗藥性的能力,非常有潛力繼續發展為抗癌藥物。
zh_TW
dc.description.abstractThe aim of this study is design and synthesis novel multi-targeted anti-cancer agents to overcome the problems in single-targeted therapy.
The concept of compound design is merging two diverse pharmacophores to obtain one molecule with dual activities. Multi-RTK inhibitor 1 was the lead compound in Chapter 2. The core structure of pyrrole-indolin-2-one was obtained through aldol condensation, followed by being coupled with the side chain containing an ester through Heck reaction. Finally, the ester was transformed to hydroxamic acid to give target compounds (12, 13, 19 and 23). The target compounds were found to possess RTK/HDAC dual inhibitory activities. Moreover, they have comparable or better cellular activities than single-targeted drugs, proving the concept of design.
In Chapter 3, two benzimidazole compounds were taken as leads, compound 35 is an ALK inhibitor and 36 is a HDAC inhibitor. Following the sequence of aromatic substitution and Heck reaction, the side chains were added onto the nitrobenzene. After reduction of the nitro group, cyclization was carried out with isothiocyanates or cyanogen bromide to give benzimidazole core structures. The hydroxamic acid was then transformed from the ester to yield target compounds (52, 59, 65, 69, 72 and 77). The results suggest they could inhibit not only ALK and HDAC simultaneously, but also ALK mutants, which are key factors of resistance. Target compound 59, with most potent cellular activities, also demonstrated great potency in animal models. With strong activities and abilities to overcome the resistance, the benzimidazole derivatives are promising for anti-cancer drug development.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:44:13Z (GMT). No. of bitstreams: 1
ntu-102-R00423005-1.pdf: 22303248 bytes, checksum: 4985b34fcce922b3fa1bd173c03b499f (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables viii
List of Schemes ix
List of Abbreviations x
Chapter 1 General Introduction 1
1.1 Multi-targeted Therapy in Cancer Treatment 1
1.2 Histone Deacetylase Inhibitors 3
1.3 Dual RTK/HDAC Inhibitors 6
Chapter 2 The Design, Synthesis and Bio-evaluation of Indolin-2-one Derivatives as Potential Multi-targeted Anti-cancer Drugs 9
2.1 Introduction and Rational Compound Design 9
2.2 Results and Discussion 11
2.2.1 Synthesis 11
2.2.2 Biological Evaluation 20
2.3 Summary 24
2.4 Experiment Section 25
2.4.1 Compound Information 25
2.4.2 In vitro Receptor Tyrosine Kinase Activity Assay 41
2.4.3 In vitro Histone Deacetylase Activity Assay 42
2.4.4 Cell Culture and Anti-proliferation Assay 43
2.4.5 Western Blot Analysis 44
Chapter 3 The Design, Synthesis and Bio-evaluation of Benzimidazole Derivatives as Potential Multi-targeted Anti-cancer Drugs 47
3.1 Introduction 47
3.2 Rational Compound Design 52
3.3 Results and Discussion 54
3.3.1 Synthesis 54
3.3.2 Biological Evaluation 65
3.4 Summary 73
3.5 Experiment Section 74
3.5.1 Compound Information 74
3.5.2 In vitro Receptor Tyrosine Kinase Activity Assay 98
3.5.3 In vitro Histone Deacetylase Activity Assay 98
3.5.4 Cell Culture and Anti-proliferation Assay 99
3.5.5 CYP450 and hERG Inhibition Assay 100
3.5.6 Efficacy Studies in Human Cancer Xenograft Model 100
3.5.7 Caspase activation assays 101
Chapter 4 Conclusion 103
References 105
Appendix A1
dc.language.isoen
dc.subject雙效抑制劑zh_TW
dc.subject抗癌藥物zh_TW
dc.subject二氫??-2-酮zh_TW
dc.subject苯並咪唑zh_TW
dc.subjectAnti-cancer drugsen
dc.subjectDual inhibitorsen
dc.subjectIndolin-2-oneen
dc.subjectBenzimidazoleen
dc.title二氫吲哚-2-酮與苯並咪唑衍生物作為潛能多靶點抗癌藥物之設計、合成與生物活性評估zh_TW
dc.titleDesign, Synthesis and Bio-evaluation of Indolin-2-one and Benzimidazole Derivatives as Potential Multi-targeted Anti-cancer Drugsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王光昭(Kuang-Chao Wang),顧記華(Jih-Hwa Guh),忻凌偉(Ling-Wei Hsin),梁碧惠(Pi-Hui Liang)
dc.subject.keyword抗癌藥物,雙效抑制劑,二氫??-2-酮,苯並咪唑,zh_TW
dc.subject.keywordAnti-cancer drugs,Dual inhibitors,Indolin-2-one,Benzimidazole,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2014-08-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
21.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved