Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56716
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周仲島(Ben Jong-Dao Jou)
dc.contributor.authorYu-Cheng Kaoen
dc.contributor.author高聿正zh_TW
dc.date.accessioned2021-06-16T05:43:58Z-
dc.date.available2020-08-06
dc.date.copyright2020-08-06
dc.date.issued2020
dc.date.submitted2020-07-29
dc.identifier.citationBarnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 2125-2137.
Braun, S. A., R. Rotunno, and J. B. Klemp, 1999: Effects of coastal orography on landfalling cold fronts. Prat I: Dry, inviscid dynamics. J. Atmos. Sci., 56, 517-533.
Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105-113.
Bell, M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in hurricane Rita (2005). J. Atmos. Sci., 69, 2414–2432.
Brand, S., and J. W. Blelloch, 1974: Changes in the characteristics of typhoons crossing the island of Taiwan. Mon. Wea. Rev., 102, 708–713.
____, ____, and ____, 1987: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130–155.
Chan, J. C. L., and X. Liang, 2003: Convective asymmetries associated with tropical cyclone landfall. part I: f-plane simulations. J. Atmos. Sci., 60, 1560–1576.
Chang, P. L., P.-F. Lin, B. J.-D. Jou, and J. Zhang, 2009a: An application of reflectivity climatology in constructing Radar hybrid scans over complex terrain. J. Atmos. Oceanic Technol., 26, 1315-1327.
____, B. J. D. Jou, and J. Zhang, 2009b: An algorithm for tracking eyes of tropical cyclones. Wea. and Forecasting, 24, 245-261.
Chang, S. W., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 1255–1270.
Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190–3208.
Chen, T.-C., S.-Y. Wang, M.-C. Yen, A. J. Clark, and J.-D. Tsay, 2010: Sudden surface warming–drying events caused by typhoon passages across Taiwan. J. Appl. Meteor. Climatol., 49, 234–252.
Chen, Y., and M. K. Yau, 2003: Asymmetric structures in a simulated landfalling hurricane. J. Atmos. Sci., 60, 2294–2312.
Chen, Y.-L., and J. Li, 1995a: Characteristics of surface pressure and wind pattern over the island of Taiwan during TAMEX. Mon. Wea. Rev., 123, 691-716.
____, and____, 1995b: Large-scale conditions for the development of heavy precipitation during TAMEX IOP 3. Mon. Wea. Rev., 123, 2978-3002.
Corbosiero, K. L. and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2110-2123.
DeHart, J. C., and R. A. Houze, 2014: Quadrant distribution of tropical cyclone Inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 2713–2732.
DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2087.
Deng, S.-M., and B. J.-D. Jou, 1994: Error analysis of extended velocity azimuthal display (EVAD) method and its application in Mei-Yu frontal rainband (in Chinese with English abstract). Atmos. Sci., 23, 123-145.
Didlake, A. C. Jr. and R. A. Houze Jr., 2013: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 1891-1911.
Durran, D. R. and J. B. Klemp, 1982: On the Effects of Moisture on the Brunt–Väisälä Frequency. J. Atmos. Sci., 39, 2152-2158.
Donaher, S. L., B. A. Albrecht, and M. Fang, 2013: Wind profiles in tropical cyclone stratiform rainbands over land. Mon. Wea. Rev., 141, 3933-3949.
Hence, D. A. and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, doi:10.1029/2007JD009429.
Fang, J., and F. Zhang, 2011: Evolution of multi-scale vortices in the development of hurricane Dolly (2008). J. Atmos. Sci., 68, 103–122.
Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044–2061.
____, and ____, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269.
Hanley, D. E., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper tropospheric troughs. Mon. Wea. Rev., 129, 2570-2584.
Hence, D. A., and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108.
Hoffman, R. H., and S. M. Leidner, 2005: An introduction to the near-real-time QuikSCAT data. Wea. Forecasting., 20, 476-493.
Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708-1727.
Houze, R. A. 2010: Review Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293-344.
Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 1006–1022.
____, S.-H. Su, R. G. Fovell, and H.-C. Kuo, 2018: On typhoon track deflections near the east coast of Taiwan. Mon. Wea. Rev., 146, 1495–1510.
Houze, R. A., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235–1239.
Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Super-Typhoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598-615.
Jones, S. C., 1995: The evolution of vortices in vertical shear. Part I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821–851.
Jou, B. J.-D., and S.-M. Deng, 1992: Structure of a low-level jet and its role in triggering and organizing moist convection over Taiwan: A TAMEX case study. Terr. Atmos. Oceanic Sci., 3, 35-58.
____, W.-C. Lee, S.-P. Liu, and Y.-C. Kao, 2008a: Generalized VTD retrieved of atmospheric vortex kinematic structure. Part I: Formulation and error analysis. Mon. Wea. Rev., 128, 1925-1936.
____, Y.-C. Kao, and W.-C. Lee, 2008b: The mid- and low-level Inner core circulation of typhoon Nari (0116) after landfall (in Chinese with English abstract). Atmos. Sci., 36, 163-178
Kao, Y.-C., B. J.-D. Jou, J. C.-L. Chan and W.-C. Lee, 2019: An observational study of a coastal barrier jet induced by a landfalling typhoon. Mon. Wea. Rev., 147, 4589-4609.
Kepert, J. D., 2006a: Observed Boundary Layer Wind Structure and Balance in the Hurricane Core. Part I: Hurricane Georges. J. Atmos. Sci., 63., 2169-2193.
____, 2006b: Observed Boundary Layer Wind Structure and Balance in the Hurricane Core. Part II: Hurricane Mitch. J. Atmos. Sci., 63., 2194-2211.
Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 1079-1090.
Lee, W.-C., B. J.-D. Jou, P.-L. Chang, and S.-M. Deng, 1999: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler velocity patterns and the GBVTD technique. Mon. Wea. Rev., 127, 2419-2439.
____, ____, ____, and F. D. Marks Jr., 2000: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part III: Evolution and structures of Typhoon Alex (1987). Mon. Wea. Rev., 128, 3982-4001.
LeMone, M., A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 1815-1834.
____, and M. W. Moncrieff, 1994: Momentum and mass transport by convective bands: comparisons of highly idealized dynamical models to observations. J. Atmos. Sci., 51, 281-305.
Li, J., Y.-L. Chen, and W.-C. Lee, 1997: Analysis of a heavy rainfall event during TAMEX. Mon. Wea. Rev., 125, 1060-1082.
____, and Y.-L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959-971.
Lin, Y.-L., J. Han, D. W. Hamilton, and C.-Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534-562.
____, S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 1849-1866.
Loescher, K. A., G. S. Young, B. A. Colle, and N. S. Winstead, 2006: Climatology of barrier jets along the Alaskan coast. Part I: Spatial and temporal distributions. Mon. Wea. Rev., 134, 437-453.
Marwitz, J. D., 1987: Deep Orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44, 159-173.
Miller, R. R., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 1408-1418.
Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 1779-1805.
Overland, J. E., and N. A. Bond, 1995: Observations and scale analysis of coastal wind jet. Mon. Wea. Rev., 123, 2934-2941.
Ooyama, K., 1964: A dynamical model for the study of tropical cyclone development. Geofis. Int, 4, 187-198.
Parish, T. R. 1982: Barrier winds along the Sierra Nevada Mountains. J. Appl. Meteorol. 21, 925-930.
Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 977-1003.
Powell, 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 891-917.
Ray, P. C., C. L. Ziegier, W. Bumgarner, and R. J. Serafin, 1980: Single- and Multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 1607–1625.
Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163–3188.
Rogers, R., S. S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 1577–1599.
____, 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 44-70.
____, J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey and E. J. Zipser, 2016: Observations of the Structure and Evolution of Hurricane Edouard (2014) during Intensity Change. Part II: Kinematic Structure and the Distribution of Deep Convection. Mon. Wea. Rev., 144, 3355–3376.
Rudnick, D. L., S. Jan, L. Centurioni, C.-M. Lee, R.-C. Lien, J. Wang, D.-K. Lee, R.-S. Tseng, Y. Y. Kim, and C.-S. Chern, 2011: Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography, 24(4):52–63.
Rotunno, R., and K. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542-561.
Samsury, C. E., and E. J. Zipser, 1995: Secondary Wind Maxima in Hurricanes: Airflow and Relationship to Rainbands. Mon. Wea. Rev., 123., 3502-3517.
Schwerdtfeger, W., 1975: The effect of the Antarctic Peninsula on the temperature regime of the Weddell sea. Mon. Wea. Rev., 103, 45–51.
Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394.
____, 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 1984-1998.
Shimada, U., M. Sawada, and H. Yamada, 2016: Evaluation of the accuracy and utility of tropical cyclone intensity estimation using single ground-based Doppler radar observations. Mon. Wea. Rev., 144, 1823-1840.
Smith, R. B., 1989: Mountain-induced stagnation points in hydrostatic flow. Tellus, 41A, 270-274.
Smolarkiewicz, P. R., and R. M. Rasmussen, and T. L. Clack, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45. 1872-1905.
Srivastava, R. C., T. J. Matejka, and T. J. Lorello, 1986: Doppler radar study of the trailing anvil region associated with a squall line. J. Atmos. Sci., 43., 356-377.
Sun, W.-Y., and J. D. Chern, C.-C. Wu, and W.-R. Hsu, 1991: Numerical simulation of mesoscale circulation in Taiwan and surrounding area. Mon. Wea. Rev., 119, 2558-2573.
Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817–1830.
Tang, C.-K., and J. C.-L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 1578-1589.
Trier, S. B., D. B. Parsons, and T. J. Matejka, 1990: Observations of a subtropical cold front in a region of complex terrain. Mon. Wea. Rev., 118, 2449–2470.
Wang, Y., 2002: Vortex Rossby Waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 1239–1262.
____, 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250-1273.
Williams, G. J., 2019: Idealized simulations of the inner core boundary layer structure in a landfalling tropical cyclone. part I: kinematic structure. Trop. Cyclone Res. Rev., 8, 47–67.
Willoughby, H. E., J. Clos, and M. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411.
____, 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183–191.
____, 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 3053–3067.
Wingo, M. T., and D. J. Cecil, 2010: Effects of vertical wind shear on tropical cyclone precipitation. Mon. Wea. Rev., 138, 645– 662.
Wong, M. L., M., and J. C.-L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 39, 1859–1876.
____, and J. C. L. Chan, 2007: Modeling the effects of land-sea roughness contrast on tropical cyclone winds. J. Atmos. Sci., 64, 3249-3264.
Wu, C.-C. and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67-80.
____, 2001: Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 1533–1549.
____, H. J. Cheng, Y. Wang, and K. H. Chou, 2009: A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 21-40.
Wu, C.-R., Y.-L. Chang, L.-Y. Oey, C.-W. J. Chang, and Y.-C. Hisn, 2008: Air-sea interaction between tropical cyclone Nari and Kuroshio. Geophys. Res. Lett., 30(35), L12605.
Yang, M.-J., S. A. Braun, and D.-S. Chen, 2011: Water Budget of typhoon Nari (2001). Mon. Wea. Rev., 139, 3809-3828.
Yeh, T.-C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan orography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 3193–3212.
____, and ____, 1993b: Interaction of typhoons with the Taiwan orography. Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 3213–3233.
Yu, C.-K. and Y. Chen, 2011: Surface fluctuations associated with tropical cyclone rainbands observed near Taiwan during 2000-08. J. Atmos. Sci., 68, 1568-1585.
____, and C.-L. Tsai, 2013: Structural and surface features of arc-shaped radar echoes along an outer tropical cyclone rainband. J. Atmos. Sci., 70, 56-72.
Yu, Z., Y. Wang, and H. Xu, 2015: Observed Rainfall Asymmetry in Tropical Cyclones Making Landfall over China. J. Appl. Meteor. Climatol, 18, 422–435.
Zeng, L., and R. A. Brown, 1998: Scatterometer observations at high wind speeds. J. Appl. Meteorol., 37, 1412-1419.
Zou, J., Z. Tao, and C. Songxue, 2015: A high wind geophysical model function for QuikSCAT wind retrievals and application to typhoon Ioke. Acta Oceanol. Sin., 34, 65-73.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56716-
dc.description.abstract颱風所引發的海岸地形噴流,是造成臺灣地區登陸颱風降雨結構及強度發生顯著改變的重要因子。本研究首度利用臺灣環島岸基都卜勒雷達網及地面觀測資料,針對2005年海棠颱風登陸過程中所引發之地形噴流、颱風降雨結構及強度變化特徵進行詳細分析,同時亦檢視伴隨其他5個西行颱風的海岸地形噴流特徵,並討論其與颱風雨帶之間的關聯性。
地形噴流的形成及其結構的演變是受到海棠颱風登陸過程中不同範圍的環流型態所控制。當海棠外圍環流接觸到陸地時,地形迎風面強烈的東北風因阻擋效應轉而向南,形成平行於海岸地形的低層噴流,地形噴流長約140公里、寬約25公里、持續時間約6小時,北支有較強的風速(最大風速值超過50 m s−1)、核心高度介於1至2.5公里;南支風速較弱(最大風速值約45 m s−1)、核心高度介於1至2公里。當海棠的核心區開始影響陸地時,因顯著氣流曲率的影響,導致地形噴流的南支向離岸方向偏離,地形噴流的偏北風氣流與地形東南側背風低壓所導引轉向的南風氣流在颱風中心西南側輻合,激發東西向的線狀雨帶發展(長約160公里、寬約20公里),隨後線狀雨帶氣旋式移動併入內眼牆,造成雙眼牆結構的崩潰(東側眼牆增強,西側眼牆消失)及強度的減弱,當海棠中心接近至離岸60公里處時,西側眼牆重新發展,隨後眼牆重整內縮,強度增強。
在不同的個案分析中均發現有地形噴流,噴流的位置、強度及持續時間受颱風路徑、強度及大小所控制。颱風路徑偏北(南),噴流位於地形東岸北側,噴流風速較強(弱),發展高度較高(低);噴流風速與迎風面垂直於地形的風速分量成正比;噴流的持續時間則與颱風的環流大小成正比。除了低層地形噴流之外,在部分颱風個案中亦有觀測到多噴流及噴流舉升的訊號,其與颱風主雨帶的通過有密切的關聯性。伴隨強烈對流發展的雨帶,雨帶中層存在中層噴流。當雨帶移入沿岸陸地時,低層因地形阻擋形成低層噴流,因而呈現中低層雙噴流特徵。
zh_TW
dc.description.abstractThe coastal barrier jet (CBJ) induced in typhoon environment is a critical mesoscale phenomenon that causes significant precipitation structure and intensity change of typhoon prior to its landfall in Taiwan area. By using coastal Doppler radar and surface observations in Taiwan, CBJ and precipitation structure and intensity changes of typhoon Haitang (0505) before landfall are studied for the first time. In addition, different types of CBJ associated with the other five selected typhoons are examined and the relation between the CBJ and the principle rainband are especially investigated.
It is found that the formation and evolution of CBJ was controlled by different flow regimes associated with Haitang. When outer circulation touched the coastal terrain, CBJ formed. A persistent prevailing strong northeasterly wind impinging the mountain led to the formation of CBJ parallel to the shore. The CBJ persisted for almost 6 h and was approximately 140 km long and 25 km wide. The northern branch of the CBJ had a stronger wind (maximum wind speed > 50 m s−1), a greater vertical extent (the core of the CBJ was between 1.0 and 2.5 km in height), and a more persistent jet signal than the southern branch (maximum wind speed ~ 45 m s−1 and the core was between 1.0 and 2.0 km). After the core region reached the coastal terrain, considerable curvature of the core region circulation caused the southern branch of CBJ shifted offshore. The northerly CBJ and the southerly of the terrain-induced mesolow (located to the southeast of topography) converged at southwest portion of the storm center resulting an east-west line convection, approximately 160 km in length and 20 km in width, formation. The line convection moved cyclonically and merged into inner eyewall lead to the concentric eyewall breakdown and temporal weakening of the storm. When Haitang moved to approximately 60 km off the coast, the western-side eyewall recovered by nearshore convection, and followed eyewall contraction and intensification.
In addition to Haitang, other five westbound landfall typhoons are selected to investigate the characteristics of CBJ. The property of CBJ is controlled by the track, intensity, and size of the storms. The CBJ associated with north (south) track group locates to the northern (southern) section of east coast, and has a stronger (weaker) wind speed and higher (lower) core altitude. The maximum wind speed of CBJ is proportional to the normal-terrain component of upstream flow, and a positive correction exists between CBJ duration and typhoon size. Multiple jets or uplifted CBJ existed in some landfall typhoon cases. It closely links to the convective activities of the rainbands in the storm. The vigorous convective rainband associates band-paralleling mid-level jet. When it encountered coastal terrain, the low-level jet formed owning to terrain blocking, thus the multiple jets feature was revealed.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:43:58Z (GMT). No. of bitstreams: 1
U0001-2407202014471000.pdf: 12290633 bytes, checksum: 34b0a0088d91f8c70828f1aec6d1dc0f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract III
Table of Contents V
List of Tables VIII
Figure Captions IX
Chapter 1 Introduction 1
Chapter 2 Data and methodology 7
2.1 Data 7
a. Radar data 7
b. Surface station data 8
c. Sounding station data 8
d. QuikSCAT data 9
e. ECMWF ERA-Interim data 9
2.2 Methodology 9
a. Dual-Doppler wind synthesis 9
b. Vertical profile of horizontal wind retrieve technique 9
c. Tropical cyclone primary circulation retrieve technique 10
d. Fourier decomposition analysis 11
e. Tropical cyclone center finding technique 12
Chapter 3 Coastal barrier Jet associated with Typhoon Haitang 13
3.1 Typhoon Haitang 13
3.2 Spatial structure of CBJ 15
3.3 Evolution of CBJ 20
3.4 Formation mechanism of CBJ 25
3.5 Idealized vortex experiment 29
3.6 Summary and discussion 31
Chapter 4 Precipitation and intensity changes of Haitang 35
4.1 The precipitation structure evolution 35
a. Line convection formation and eyewall evolution 36
b. Influence of vertical wind shear and storm motion 40
4.2 The intensity variation 41
a. Concentric eyewall breakdown 44
b. Rapid re-intensification 45
4.3 The role of CBJ 47
4.4 Summary and discussion 50
Chapter 5 Different types of CBJ 55
5.1 Classification of westbound landfalling typhoons 56
5.2 Properties of CBJs 57
a. Typhoon Soudelor 1513 (north track) 58
b. Typhoon Talim 0513 (north track) 60
c. Typhoon Longwang 0519 (Central track) 61
d. Typhoon Fungwong (South track) 63
e. Typhoon Matmo 1410 (South track) 64
5.3 Discussion and Concluding Remarks 65
a. CBJ property affected by topography 66
b. CBJ property affected by strength and persistence of upstream flow 67
c. CBJ and static stability of upstream flow 68
d. Splitting of CBJ in north track typhoons 69
e. Mid-level CBJ associated with typhoon Talim 71
Chapter 6 Relation between CBJ and spiral rainband 72
6.1 The review of previous spiral rainband studies 73
6.2 CBJ and spiral rainband 75
a. Typhoon Haitang (0505) 75
b. Typhoon Talim (0513) 79
c. typhoon Soudelor (1513) 82
6.3 Discussion and Summary 84
Chapter 7 Conclusions and future works 87
7.1 Conclusions 87
7.2 Future works 89
Appendix A Characteristics of operational Doppler radars RCHL and RCWF 91
Appendix B Calculation of Brunt–Väisälä frequency 92
Appendix C Calculation of pressure gradient force 94
Reference 96
Tables 109
Figures 117
dc.language.isoen
dc.subject沿岸地形噴流zh_TW
dc.subject登陸颱風zh_TW
dc.subject降雨結構改變zh_TW
dc.subject強度改變zh_TW
dc.subjectcoastal barrier jeten
dc.subjectlandfalling typhoonen
dc.subjectprecipitation structure changeen
dc.subjectintensity changeen
dc.title登陸颱風引發之海岸地形噴流及其對降雨和強度影響之觀測研究zh_TW
dc.titleAn Observational Study of the Coastal Barrier Jet Induced by Landfall Typhoon and its Influence on Precipitation and Intensity Changesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳泰然(Tai-Jen George Chen),李清勝(Cheng-Shang Lee),郭鴻基(Hung-Chi Kuo),楊明仁(Ming-Jen Yang),游政谷(Cheng-Ku Yu)
dc.subject.keyword沿岸地形噴流,登陸颱風,降雨結構改變,強度改變,zh_TW
dc.subject.keywordcoastal barrier jet,landfalling typhoon,precipitation structure change,intensity change,en
dc.relation.page169
dc.identifier.doi10.6342/NTU202001825
dc.rights.note有償授權
dc.date.accepted2020-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
U0001-2407202014471000.pdf
  未授權公開取用
12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved