請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56697完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光 | |
| dc.contributor.author | Yu-Hao Su | en |
| dc.contributor.author | 蘇玉豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:42:49Z | - |
| dc.date.available | 2014-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-12 | |
| dc.identifier.citation | [1] Hu, J. (2003). Analyses of the temperature field in a bar-shaped piezoelectric transformer operating in longitudinal vibration mode. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 50(6), 594-600.
[2] J. Yang, “Piezoelectric transformer structural modeling—A review,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 6, pp.1154–1170, 2007. [3] A. M. Flynn and S. R. Sanders, 'Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers,' IEEE Transactions on Power Electronics, vol. 17, pp. 8-14, 2002. [4] R. C. Buchanan, R. W. Schwartz, J. Ballato, and G. H. Haertling, Ceramic Materials for Electronics, (chapter 4), 3rd ed: Marcel Dekker Inc., 2004. [5] K. Uchino, J. H. Zheng, Y. H. Chen, X. H. Du, J. Ryu, Y. Gao, S. Ural, S. Priya, and S. Hirose, 'Loss mechanisms and high power piezoelectrics,' Journal of Materials Science, vol. 41, pp. 217-228, 2006. [6] Weisshaar, T. A., & Ehlers, S. M. (1990, April). Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing. In Proceedings of the 31st Structures, Structural Dynamics, and Materials Conference (pp. 1611-1623). [7] Wang, B. L., & Mai, Y. W. (2003). Thermal shock fracture of piezoelectric materials. Philosophical Magazine, 83(5), 631-657. [8] Zhang, T. Y., & Gao, C. F. (2004). Fracture behaviors of piezoelectric materials. Theoretical and applied fracture mechanics, 41(1), 339-379. [9] Wang, D., Fotinich, Y., & Carman, G. P. (1998). Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics. Journal of applied physics, 83(10), 5342-5350. [10] S. Hirose, M. Aoyagi, Y. Tomikawa, S. Takahashi, and K. Uchino, “High power characteristics at antiresonance frequency of piezoelectric transducers,” Ultrasonics, vol. 34, no. 2–5, pp. 213–217, 1996. [11] K. Uchino, J. Zheng, A. Joshi, Y.-H. Chen, S. Yoshikawa, S. Hirose, S. Takahashi, and J. W. C. de Vries, “High power characterization of piezoelectric materials,” J. Electroceram., vol. 2, no. 1, pp. 33–40, 1998. [12] K. Uchino and S. Hirose, “Loss mechanisms in piezoelectrics: How to measure different losses separately,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 48, no. 1, pp. 307–321, 2001. [13] M. C. Do, Piezoelectric Transformer Integration Possibility in High Power Density Applications: TUDpress Verlag der Wiss., 2008. [14] Y. P. Liu, D. Vasic, W. J. Wu, F. Costa and C. K. Lee, 2009 Design of fixed-frequency controlled radial-mode stacked disk-type piezoelectric transformers for DC/DC converter application Smart Materials and Structures 18(8) 085025 [15] N Dai, A W Lofti, G Skutt, W Tabisz and F C Lee 1994 A comparative study of high-frequency, low-profile planar transformer technologies in Proc. IEEE APEC’94, pp. 226–232 [16] Y P Liu, D Vasic and F Costa 2012 Wideband ZVS half-bridge circuit for piezoelectric transformers with small inductance Electronics Letters 48 523-25 [17] D Vasic, Y P Liu, D Schwander, F Costa and W J Wu 2013 Improvement of Burst-Mode Control of Piezoelectric Transformer-based DC/DC Converter Smart Materials & Structures, 22(5) [18] Y P Liu, D Vasic, F Costa and W J Wu 2010 Electromagnetic Interferences Analysis of DC/DC Converters Based on Piezoelectric Transformers Japanese Journal of Applied Physic 49(6) 061501 [19] D Vasic, F Costa and E Sarraute 2006 Piezoelectric Transformer for Integrated MOSFET & IGBT Gate Driver IEEE Trans. on Power Electron. 21 56-65 [20] Richards, C. D., Anderson, M. J., Bahr, D. F., & Richards, R. F. (2004). Efficiency of energy conversion for devices containing a piezoelectric component. Journal of Micromechanics and Microengineering, 14(5), 717. [21] T Yamane, S Hamamura, T Zaitsu, T Minomiya, M Shoyama and Y Fuda 1998 Efficiency improvement of piezoelectric-transformer DC-DC converter in Power Electronics Specialists Conference, 1998. PESC 98 Record. 29th Annual IEEE, pp. 1255-1261 vol. 2 [22] G Ivensky, S Bronstein and S Ben-Yaakov 2004 A comparison of piezoelectric transformer AC/DC converters with current doubler and voltage doubler rectifiers IEEE Trans. on Power Electron. 19 1446-53 [23] D D Ebenezer, D Thomas and S M Sivakumar 2007 Non-uniform heat generation in rods with hysteretic damping Journal of Sound and Vibration 302 892-902 [24] N Wakatsuki, Y Kagawa, K Suzuki and M Haba 2003 Temperature-frequency characteristics simulation of piezoelectric resonators and their equivalent circuits based on three-dimensional finite element modeling Int. J. Numerical Modeling: Electron. Networks, Devices Fields 16 479-492 [25] H W Joo, C H Lee, J S Rho and H K Jung 2006 Analysis of temperature rise for piezoelectric transformer using finite-element method IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 1449-57 [26] D Thomas, D D Ebenezer and S M Srinivasan 2010 Power dissipation and temperature distribution in piezoelectric ceramic slabs J. Acoust. Soc. Am.128(7) 1700–1711 [27] A Albareda, P Gonnard, V Perrin, R Briot and D Guyomar 2000 Characterization of the mechanical nonlinear behavior of piezoelectric ceramics IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 844-53 [28] K Insung, K Minsoo, J Soonjong, S Jaesung and T Vo Viet 2011 Piezotransformer with ring-dot-shape for easy heat radiation and high efficiency power,” in Int. Symp. Applications of Ferroelectrics and Int. Symp. Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials, 2011, pp. 1–6. [29] W W Shao, L J Chen, C L Pan, Y B Liu and Z H Feng 2012 Power density of piezoelectric transformers improved using a contact heat transfer structure IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 3-81 [30] Y H Su, Y P Liu, D Vasic, W J Wu, F Costa and C K Lee 2012 Power Enhancement of Piezoelectric Transformers by Adding Heat Transfer Equipment IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(10) 2129-2136 [31] Su, Y. H., Liu, Y. P., Vasic, D., Costa, F., Wu, W. J., & Lee, C. K. (2013). Study of a piezoelectric transformer-based DC/DC converter with a cooling system and current-doubler rectifier. Smart Materials and Structures, 22(9), 095005. [32] Gautschi, G. (2002). Piezoelectric sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers. Springer. [33] R. C. Buchanan, R. W. Schwartz, J. Ballato, and G. H. Haertling, Ceramic Materials for Electronics, (chapter 4), 3rd ed: Marcel Dekker Inc., 2004. [34] Zhang, S., Xia, R., Lebrun, L., Anderson, D., & Shrout, T. R. (2005). Piezoelectric materials for high power, high temperature applications. Materials letters, 59(27), 3471-3475. [35] Cao, W., Zhu, S., & Jiang, B. (1998). Analysis of shear modes in a piezoelectric vibrator. Journal of applied physics, 83(8), 4415-4420. [36] E L Horsley, M P Foster and D A Stone 2007 State-of-the-art Piezoelectric Transformer technology In Proc. European Conference on Power Electronics and Applications 2007, pp. 1-10 [37] D. Guyomar, C. Magnet, E. Lefeuvre, and C. Richard, 'Power capability enhancement of a piezoelectric transformer,' Smart Materials and Structures, vol. 15, pp. 571-580, 2006. [38] S. Ben-Yaakov and S. Lineykin, 'Maximum power tracking of piezoelectric transformer HV converters under load variations,' Power Electronics, IEEE Transactions on, vol. 21, pp. 73-78, 2006. [39] I. Kartashev, T. Vontz, and H. Florian, 'Regimes of piezoelectric transformer operation,' Measurement Science and Technology, vol. 17, pp. 2150-2158, 2006. [40] R. L. Lin, 'Piezoelectric Transformer Characterization and Application of Electronic Ballast (PhD Thesis),' Virginia Polytechnic Institute and State University, 2001. [41] A. V. Carazo, '50 Years of piezoelectric transformers. Trends in the technology,' presented at Materials Research Society Symposium, Boston, MA, United States, 2003. [42] APC International Ltd., 'Piezoelectric Constants. 'http://www.americanpiezo.com/piezo_theory/piezoelectric_constants.html [43] R. C. Buchanan, R. W. Schwartz, J. Ballato, and G. H. Haertling, Ceramic Materials for Electronics, (chapter 4), 3rd ed: Marcel Dekker Inc., 2004. [44] P. Laoratanakul and K. Uchino, 'Designing a radial mode laminated piezoelectric transformer for high power applications,' presented at IEEE International Symposium on Applications of Ferroelectrics, 2005. [45] S. Priya, H. Kim, S. Ural, and K. Uchino, 'Erratum: High power universal piezoelectric transformer (IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (Jan. 2006) 53:1 (23-29)), 'IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, pp. 810-816, 2006. [46] K. Brebol, 'Piezoelectric Transformer,' U.S. Patent 6,707,235, 2004. [47] J. Du, J. Hu, and K. J. Tseng, 'High-power, multioutput piezoelectric transformers operating at the thickness-shear vibration mode,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, pp. 502-509, 2004. [48] J. S. Yang and X. Zhang, 'Analysis of a thickness-shear piezoelectric transformer,' International Journal of Applied Electromagnetics and Mechanics, vol. 21, pp. 131-141, 2005. [49] O.M.Stuetzer, Sandia Laboratory Report No. SC-RR-66-414. [50] T.Zaitsu, T.Inoue, O.Ohnishi, A.Iwamoto, 2MHz Power Converter with Piezoelectric Ceramic Transformer, Proc. of IEEE INTELEC, (1992). [51] O.Ohnishi, H.Kishie, A.Iwamoto, Y.Sasaki, T.Zaitsu, T.Inoue, Piezoelectric Ceramic Transformer Operating in Thickness Extensional Vibration Mode for Power Supply, Ultrasonics Symp. Proc., pp. 483-488 (1992). [52] T.Zaitsu, O.Ohnishi, T.Inoue, M.Shoyama, T.Ninomiya, F.C.Lee, and G.C.Hua, Piezoelectric Transformer operating in Thickness Extensional Vibration and Its Application to Switching Converter, IEEE PESC Record, (1994). [53] T.Inoue, O.Ohnishi, N.Ohde, U.S. Patent No. 5,118,982 (June 1992). [54] Y.Sasaki, K.Uehara, T.Inoue, U.S. Patent 5,241,236 (August 1993). [55] T.Zaitsu, Y.Fuda, Y.Okabe, T.Ninomiya, S.Hamamura, M.Katsuno, New Piezoelectric Converter for AC-adapter, (IEEE APEC’97 Proc., 2, Feb. 1997) pp. 568-572. [56] S.Hamamura, T.Zaitsu, T.Ninomiya, M.Shoyama, Noise Characteristics of Piezoelectric-Transformer DC-DC Converter, (IEEE PESC’98 Record, May 1998) pp. 1262-1267. [57] S-J.Choi, K-C.Lee, B.H.Cho, Design of Fluorescent Lamp Ballast with PFC using a Power Piezoelectric Transformer, (IEEE Ultrasonic Symposium Proc., 1998) pp. 1135-1141. [58] R.P.Bishop, U.S. Patent 5,834,882 (1998). [59] J.A.Martin, M.J.Prieto, F.Nuno, J.Diaz, A new full-protected control mode to drive piezoelectric transformers in DC-DC converters, (PESC Proc., 2001). [60] Liu, Y. P. (2009). Conception et mise en oeuvre de dispositifs de puissance utilisant des materiaux piezoelectriques (Doctoral dissertation, Ecole normale superieure de Cachan-ENS Cachan). [61] Lin, C. Y. (1997). Design and analysis of piezoelectric transformer converters (Doctoral dissertation). [62] Chou, I. M., Lai, Y. Y., Wu, W. J., & Lee, C. K. (2011, March). Dependency of working temperature and equivalent constant of concentric disk-type piezoelectric transformer. In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring (pp. 79771X-79771X). International Society for Optics and Photonics. [63] G. Ivensky, I. Zafrany, and S. S. Ben-Yaakov, 'Generic operational characteristics of piezoelectric transformers,' IEEE Transactions on Power Electronics, vol. 17, pp. 1049-1057, 2002. [64] Y Sasaki, M Umeda, S Takahashi, M Yamamoto, A Ochi and T Inoue 2001 High-Power Characteristics of Multilayer Piezoelectric Ceramic Transducers Japanese Journal of Applied Physics 40 5743-46 [65] R. Prieto, M. Sanz, J. Cobos, P. Alou, O. Garcia, and J. Uceda, 'Design considerations of multi-layer piezoelectric transformers,' in Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE, 2001, pp. 1258-1263. [66] Ju, B., Shao, W., Pan, C., & Feng, Z. (2013). Polypropylene membrane decreases contact wear of piezoelectric transformer with heat transfer structure.Electronics Letters, 49(10), 650-651. [67] W. W. Shao, Z. H. Feng, J. W. Xu, C. L. Pan, and Y. B. Liu, 'Radiator heightens power density of piezoelectric transformers,' Electronics Letters, vol. 46, pp. 1662-1663. [68] Alonso, J. M., C. Ordiz, et al. (2008). 'A novel control method for piezoelectric-transformer based power supplies assuring zero-voltage-switching operation.' IEEE Transactions on Industrial Electronics 55(3): 1085-1089. [69] N. Wakatsuki, Y. Kagawa, K. Suzuki, and M. Haba, Temperature-frequency characteristics simulation of piezoelectric resonators and their equivalent circuits based on three-dimensional finite element modeling, Int. J. Numerical Modeling: Electron. Networks, Devices Fields 16 (2003), 479–492 [70] H. W. Joo, C. H. Lee, J. S. Rho, and H. K. Jung, Analysis of temperature rise for piezoelectric transformer using finite-element method, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 (2006), 1449-1457 [71] N. Liu, J. Yang, F. Jin, Transient thickness-shear vibration of a piezoelectric plate of monoclinic crystals, International Journal of Applied Electromagnetics and mechanics 38(1) (2012), 27-37 [72] B. Liu, Q. Jiang, J. Yang, Frequency shifts in a quartz plate piezoelectric resonator in contact with a viscous fluid under a separated electrode, International Journal of Applied Electromagnetics and mechanics, 35(3) (2011), 177-187 [73] T. Rajesh, V. Benjamin and V. Ramamoorthy, Heat Generation from Dielectric Loss and Vibration using COMSOL Multiphysics, Proc. of COMSOL Bangalore Conference, (2010) [74] C S Moo, W M Chen and H K Hsieh 2003 Electronic ballast with piezoelectric transformer for cold cathode fluorescent lamps Electric Power Applications, IEE Proceedings 150 278-82 [75] W C Su and C L Chen 2008 ZVS for PT Backlight Inverter Utilizing High-Order Current Harmonic IEEE Trans. on Power Electron. 23 4-10 [76] S Gab-Su and C Bo-Hyung 2011 Multilayer piezoelectric transducer design guidelines for low profile magnetic-less DC/DC converter in Power Electronics and ECCE Asia (ICPE & ECCE), 2011 IEEE 8th International Conference on, pp. 972-976 [77] Y.P. Liu, D. Vasic, F. Costa, W.J. Wu, and C.K. Lee, “Design Considerations of Piezoelectric Transformers with Voltage-Mode Rectifiers for DC/DC Converter Application,” in Industrial Electronics, 2008. 34th Annual Conference of IEEE, 2008, pp. 665-670. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56697 | - |
| dc.description.abstract | 本研究致力於利用創新散熱技術,有效提升壓電變壓器的輸出能量,實現高功率
密度之壓電式電力轉換器裝置。不同於以往利用外部電路控制或整流器電路設計 來提升壓電變壓器之輸出效能,本論文探討溫度所造成的非線性現象如何直接影 響並限制壓電變壓器之輸出效能,進而影響電力轉換器之功率密度。本論文詳細 透過理論分析與實驗驗證詳述壓電變壓器之熱穩定問題為提升整體效能的核心關 鍵,尤其在大功率應用。本研究主要分為四大部分:1. 首先進行壓電變壓器熱傳 導之理論分析,並結合等效電路模型介紹隨溫度變化之非線性熱阻與壓電變壓器 可承受的溫升限制;2. 透過設計不同層數的多層壓電變壓器,探討不同結構設計 壓電變壓器可承受的最大限流及輸出效能,並與加入散熱層後(由鋁片及石墨散熱 膠帶組成)同體積之多層壓電變壓器比較兩者輸出功率;3. 由加入散熱層之研究, 發現增加散熱效能之重要性後,本研究提出數種創新並有效之散熱方式提升壓電 變壓器整體效能,如利用薄型鋁製散熱裝置、致冷晶片、超薄型壓電風扇等,成 功提升壓電變壓器本身在55°C 可容許溫度限度下之輸出電流及輸出功率達三倍, 效率亦維持在良好情況;4. 最後本研究亦將壓電變壓器應用至直流對直流轉換 器,探討外接整流電路(如倍電流整流器電路)提升整體系統輸出能力之功效,並同 時加入散熱裝置之系統相互比較。使用薄型化散熱裝置之系統輸出效能提升近兩 倍,可以取代需要使用大電感元件之倍電流整流電路,並同時達到薄型且高輸出 兼具之效能。藉由本研究之成果,可成功突破壓電功率轉換裝置以往皆侷限在高 電壓、低電流之藩籬,藉由此散熱機制可實現壓電功率轉換裝置在大功率使用環 境,並適用於高電流、低電壓之不同使用需求,並且同時兼具大環境之薄型化設 計之需求。 | zh_TW |
| dc.description.abstract | The objective of this study was to increase the output current and power in a piezoelectric transformer (PT) based DC/DC converter by adding a cooling system. It is known that the output current of PT is limited by temperature build-up because of losses especially when driving at high vibration velocity. Excessive temperature rise will decrease the quality factor Q of piezoelectric component during the operational process. Simultaneously the vibration energy cannot be increased even if under higher excitation voltage. Although connecting different inductive circuits at the PT secondary terminal can increase the output current, the root cause of temperature build-up problem is not solved. This dissertation presents the heat transfer technology to deal with the temperature build-up problem. With the heat transfer technology, the threshold vibration velocity of PT can be increased and thus the output current and output power (almost three times). Furthermore, a comparison between heat transfer technology and current-doubler rectifier applied to the piezoelectric transformer based DC/DC converter was also studied. The advantages and disadvantages of the proposed technique were investigated.
A theoretical-phenomenological model was developed to explain the relationship between the losses and the temperature rise. It will be shown that the vibration velocity as well as the heat generation increases the losses. In our design, the maximum output current capacity can increase 100% when the operating condition of PT temperature is kept below 55°C. The study comprises of a theoretical part and an experimental proof-of-concept demonstration of the proposed design method. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:42:49Z (GMT). No. of bitstreams: 1 ntu-103-D97525002-1.pdf: 2400780 bytes, checksum: 54dd735d5ee74be99aec8f90001775c4 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Backgrounds and Motivations 1 1.2 Literatures Review 2 1.2.1 Thermal Issues in Piezoelectric Materials 2 1.2.2 Thermal Limits of Piezoelectric Materials 3 1.2.3 Power Limits of Piezoelectric Transformers 4 1.3 Framework of the Dissertation 6 Chapter 2 Basic Theory of the Piezoelectric Transformer 9 2.1 Fundamentals of Piezoelectricity 10 2.1.1 Piezoelectric Materials 10 2.1.2 Piezoelectric Actuation Mechanisms 12 2.2 Different Configurations of Piezoelectric Transformers 14 2.2.1 Common Configurations of Piezoelectric Transformers 14 2.2.2 High Power Piezoelectric Transformers 17 2.3 The Equivalent Circuit of the Piezoelectric Transformer 19 2.4 Equivalent Circuit Extraction for the Piezoelectric Transformers 26 2.5 Losses in Piezoelectric Transformers 30 2.6 Characteristics of the Piezoelectric Transformers Connected with a Linear Load 36 2.7 Summary 40 Chapter 3 Thermal Analysis of Multi-Layer Piezoelectric Transformer 42 3.1 Introduction 42 3.2 Analysis of Heat Generation and Temperature Rise for Multi-layer Piezoelectric Transformers 43 3.3 Analysis of Temperature-Dependent Nonlinear Resistance in PT Equivalent Circuit 45 3.4 Heat Flowchart of the PT and PT’s Control Loops of the Energy Losses 48 3.5 Experimental setup 51 3.6 Experimental results of PT with thermal dissipation layers 55 3.7 Summary 59 Chapter 4 Power Enhancement of PT by Using Heat Transfer Equipment 61 4.1 Introduction 61 4.2 Different Mechanisms of Heat Transfer Equipment 62 4.3 Experimental setup 66 4.4 COMSOL Simulation Result of Heat Generation and Temperature Rise for Multi-layer PT 76 4.5 Experimental Results and Discussion 79 4.6 Summary 82 Chapter 5 Application: PT-Based DC/DC Converter with Planar Heat Transfer Equipment 84 5.1 Introduction 84 5.2 Converter Topologies and Control Considerations 84 5.3 PT-Based Converter Circuit Diagram and Its Operation 86 5.4 Study of PT-Based DC/DC Converter with Cooling System and Current-Doubler Rectifier 90 5.5 Experimental Results and Discussion 92 5.6 Summary 102 Chapter 6 Summary and Conclusion 104 Chapter 7 The Future Works 106 REFERENCE 108 | |
| dc.language.iso | en | |
| dc.subject | 壓電變壓器 | zh_TW |
| dc.subject | 輸出能量提升 | zh_TW |
| dc.subject | 智慧結構 | zh_TW |
| dc.subject | 直流轉換器 | zh_TW |
| dc.subject | 降溫機制 | zh_TW |
| dc.subject | Piezoelectric transformer | en |
| dc.subject | Cooling system | en |
| dc.subject | DC to DC converters | en |
| dc.subject | Smart structure | en |
| dc.subject | Power enhancement | en |
| dc.title | 利用散熱技術提升壓電功率轉換裝置輸出能量之實現 | zh_TW |
| dc.title | Power Enhancement of Piezoelectric Technology Based Power
Devices by Using Heat Transfer Technology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 吳文中 | |
| dc.contributor.oralexamcommittee | 謝宗霖,羅有綱,劉元平,林志毅,唐漢熙 | |
| dc.subject.keyword | 壓電變壓器,降溫機制,直流轉換器,智慧結構,輸出能量提升, | zh_TW |
| dc.subject.keyword | Piezoelectric transformer,Cooling system,DC to DC converters,Smart structure,Power enhancement, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
