請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56675完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳肇欣(Chao-Hsin Wu chaohsinwu@ntu.edu.tw ) | |
| dc.contributor.author | Cheng-Han Wu | en |
| dc.contributor.author | 吳承翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:41:28Z | - |
| dc.date.available | 2019-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-11 | |
| dc.identifier.citation | [1] I. CISCO Systems, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013-2018,” 2014.
[2] M. Feng, N. Holonyak, Jr., and W. Hafez, “Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., 84, 151 (2004). [3] M. Feng, N. Holonyak, Jr., and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett., 84, 1952 (2004). [4] J. Bardeen, and W. H. Brattain, “The Transistor, A Semi-Conductor Triode,” Phys. Rev. 74, pp.230-231, 1948. [5] H. Kromer, “Theory of a wide-gap emitter for transistors,” Proceedings of the IRE, vol. 45, pp. 1535-1537, 1957. [6] W. Hafez, W. Snodgrass, and M. Feng, “12.5 nm base pseudomorphic heterojunction bipolar transistors achieving fT = 710 GHz and fMAX = 340 GHz,” Appl. Phys. Lett. 87, 252109 (2005). [7] C. H. Wu, G. Walter, H. W. Then, M. Feng, and N. Holonyak, Jr., “Scaling of light emitting transistor for multigigahertz optical bandwidth,” Appl. Phys. Lett. 94, 171101 (2009). [8] Peng-Hao Chou, “The effect of optical bandwidth of light-emitting transistors under different size layout design,” Master Thesis, 2013, pp. 25-26. [9] M. Feng, N. Holonyak, Jr., H. W. Then, C.H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94, 041118 (2009). [10] M. K. Wu, M. Feng, and N. Holonyak, Jr., “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunneling,” Appl. Phys. Lett. 101, 081102 (2012). [11] H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, Jr., “Electrical-optical signal mixing and multiplication (2→22 GHz) with a tunnel junction transistor laser,” Appl. Phys. Lett. 94, 101114 (2009). [12] Donald A. Neamen, Ed., Fundamentals of Semiconductor Physics and Devices, 1st edition: McGraw-Hill, 1992, pp. 313-316. [13] Wen-Chiung Tu, “Fabrication and Characterization of Resonant-Cavity Light-Emitting Transistors,” Master Thesis, 2013, pp. 16. [14] D. E. Mars, Y.-L. Chang, M. H. Leary, and S. D. Roh, “Low-resistance tunnel junctions on GaAs substrates using GaInNAs,” Appl. Phys. Lett. 84, 2560 (2004). [15] C. M. Wolfe, N. Holonyak, Jr., and G. E. Stillman, Physical Properties of Semiconductors: Prentice Hall, Englewood Cliffs, NJ, 1989, pp. 219-220. [16] D. R. Pehlke and D. Pavlidis, “Evaluation of the Factors Determining HBT High-Frequency Performance by Direct Analysis of S-parameter Data,” IEEE Trans. Microwave Thoery Tech., vol. 40, pp. 2367-2373 Dec. 1992. [17] Bin Li, Sheila Prasad, Li-Wu Yang and S. C. Wang, “A Semianalytical Parameter-Extraction Procedure for HBT Equivalent Circuit,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 1427-1435, Oct. 1998. [18] Sami Bousnina, Pierre Mandeville, Ammar B. Kouki, Robert Surridge and Fadhel M. Ghannouchi, “Direct Parameter-Extraction Method for HBT Small-Signal Model,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 529-536, Feb. 2002. [19] Hsiao-Lun Wang, Peng-Hao Chou, and Chao-Hsin Wu, “Microwave Determination of Quantum-Well Capture and Escape Time in Light-Emitting Transistors,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1088-1091, Mar. 2013. [20] Wen-Bin Tang, Che-Ming Wang, and Yue-Ming Hsin, “A New Extraction Technique for the Complete Small-Signal Equivalent-Circuit Model of InGaP/GaAs HBT Including Base Contact Impedance and AC Current Crowding Effect,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 3641-3647, Oct. 2006. [21] Solon Jose Spiegel, Dan Ritter, R. A. Ham, A. Feygenson, and P. R. Smith, “Extraction of the InP/GaInAs Heterojunction Bipolar Transistor Smaill-Signal Equivalent Circuit,” IEEE Trans. Electron Devices, vol. 42, no. 6, pp. 1059-1064, Jun. 1995. [22] Allan P. Laser and David L. Pulfrey, “Reconciliation of Method for Estimating fmax for Micro Heterojunction Transistors,” IEEE Trans. Electron Device, vol. 38, no. 8, pp. 1685-1692, Aug. 1991. [23] Hsiao-Lun Wang, Yin-Jie Huang, and Chao-Hsin Wu, “Optical frequency response analysis of light-emitting transistors under different microwave configurations,” Appl. Phys. Lett. 103, 051110 (2013). [24] Yin-Jie Huang, “Small-Signal Circuit Model Analysis and Characterization of Resonant-Cavity Light-Emitting Transistors,” Master Thesis, 2014, pp. 5-29. [25] N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Semiconductor quantum dots for application in diode lasers,” Electron. Lett. 30, 1416 (1994). [26] S. Raghavan, D. Forman, P. Hill, N. R. Weisse-Bernstein, G. von Winckel, P. Rotella, S. Krishna, S. W. Kennerly, and J. W. Little, “Normal-incidence InAs/In0.15Ga0.85As quantum dots-in-a-well detector operating in the long wave infrared atmospheric window (8~12 μm),” J. Appl. Phys. 96, 1036 (2004). [27] D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, “Exciton localization and temperature stability in self-organized InAs quantum dots,” Appl. Phys. Lett. 68 (2), 8 (1996). [28] L. Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, A. Bignazzi, F. Bogani, L. Carraresi, M. Colocci, A. Bosacchi, P. Frigeri, and S. Franchi, “Thermally activated carrier transfer and luminescence line shape in self-organized InAs quantum dots,” Appl. Phys. Lett. 69 (22), 25 (1996). [29] T. Won, S. Iyer, S. Agarwala, and Hadis Morkoc, “Collector Offset Voltage of Heterojunction Bipolar Transistors Grown by Molecular Beam Epitaxy,” IEEE Electron Device Letters, vol. 10, no. 6, pp. 274-276, Jun. 1989 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56675 | - |
| dc.description.abstract | 本篇論文的主要研究為穿隧接面發光電晶體的製程與其元件特性量測分析,我們將發光電晶體的AlGaAs/InxGa(1-x)As基-集極接面設計成高濃度的穿隧接面,同時比較銦含量分別為5 %及2.5 %的穿隧接面發光電晶體在直流及高頻特性上的差異。基-集極穿隧接面可提供額外的電洞回補到基極量子井提供額外的放光,使發光電晶體的輸出光強度和頻寬得以提升。可以藉由理論計算得知銦含量5 %的穿隧接面因為有較小的能隙而有較高的穿隧機率。此外,電晶體的基-集極接面為高摻雜濃度形成的穿隧接面,並透過直接穿隧(direct tunneling)及法蘭茲-凱爾迪西效應(Franz-Keldysh photon assisted tunneling)使得發光電晶體除了有電流調變的能力外還多了基-集極的電壓調變能力,這使得穿隧接面發光電晶體可以做為訊號混成元件。當元件操作在負微分電阻(negative differential resistance)區域時,會使光頻率響應出現鬆弛振盪造成高達12 GHz的光輸出頻寬。另外透過小訊號模型來萃取穿隧接面發光電晶體的小訊號參數,我們的到銦含量5 %的穿隧接面有較小的基-集極接面電阻驗證了5 %的穿隧接面發光電晶體有較高的穿隧機率及光輸出頻寬。
此外,我們製作出第一顆InAs/GaAs量子點發光電晶體。量子點因其特殊的量子能階及電子侷限能力在過去十年被應用在許多元件上,例如: 二極體雷射、發光二極體及光偵測器等。因此我們將量子點加入發光電晶體的基極當作主動區,並量測其輸出的電訊號及光訊號的特性曲線。 | zh_TW |
| dc.description.abstract | This thesis presents the fabrication and characterization of tunnel junction light-emitting transistors (TJLET) with 2.5 % and 5 % indium mole fraction at the AlGaAs/InxGa(1-x)As base-collector tunnel junctions. The collector tunnel junction is an additional source of holes resupply to the base, and to recombination, providing the higher optical output and optical modulation bandwidth. The experimental data can be explained by calculating the tunneling probability. In addition, high p+ and n+ tunnel junction doping can be more effectively controlled by the change of voltage via direct tunneling and Franz-Keldysh photon-assisted tunneling, which makes possible a direct scheme of voltage modulation in addition to the usual current modulation. This is an advantage for signal processing. A resonant optical modulation bandwidth up to 12 GHz is obtained via direct voltage modulation when the TJLET is operated in negative differential resistance region. An analytical understanding of these physical characteristics is developed based on experimental data and small-signal equivalent circuit model of TJLET. From the parasitic element extraction, we find out the base-collector resistance is the key component in the operation of TJLET.
Moreover, the first InAs/GaAs quantum dot light-emitting transistor (QDLET) is fabricated. The δ-function-like density of state and strong localization of electronic wave function make the QDs attractive for many device applications. In this work, the electrical and optical characteristics of QDLET are demonstrated. The emission wavelength is near ~ 1100 nm and suitable for optical communication. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:41:28Z (GMT). No. of bitstreams: 1 ntu-103-R01941018-1.pdf: 4740946 bytes, checksum: 2babda2c682240c59877bea9d5b032bf (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES x Chapter 1 INTRODUCTION 1 1.1 Motivation 1 1.2 From Transistor to Light-Emitting Transistor 3 1.3 Organization of Work 6 Chapter 2 DC CHARACTERISTICS OF InGaAs TUNNEL JUNCTION ON LIGHT - EMITTING TRANSISTORS 7 2.1 Device Layer Structures and Layout Design 8 2.2 Device Fabrication 11 2.3 Operation Principle of TJLET 11 2.3.1 Characteristics of Tunnel Junction 11 2.3.2 Current Components of TJLET 13 2.4 Electrical-Optical Characteristics of TJLET 16 2.5 Direct Tunneling and Franz-Keldysh photon-assisted Tunneling 19 2.5.1 Impact of Direct Tunneling 19 2.5.2 Impact of Franz-Keldysh photon-assisted Tunneling 22 2.6 Impact of Different Tunneling Effect on the TJLET Output 25 Chapter 3 RF CHARACTERISTICS OF InGaAs TUNNEL JUNCTION ON LIGHT - EMITTING TRANSISTORS 26 3.1 Device Structures and Layout Design 26 3.2 Experimental Setup and Small-Signal Model 28 3.3 Electrical-Optical Characteristics 29 3.4 RF Characteristics 31 3.5 Small-Signal Circuit Elements Extraction 35 3.6 Parasitic Element: Rbc 39 3.7 Parasitic Effect: Rbc 42 3.8 Intrinsic Optical Response Extraction 46 Chapter 4 QUANTUM DOT LIGHT - EMITTING TRANSISTOR 48 4.1 Device Structure and Photoluminescence Spectrum 48 4.2 Device Fabrication 51 4.3 Electrical-Optical Characteristics 51 Chapter 5 CONCLUSION 54 REFERENCE 56 | |
| dc.language.iso | en | |
| dc.subject | 穿隧接面 | zh_TW |
| dc.subject | 發光電晶體 | zh_TW |
| dc.subject | tunnel junction | en |
| dc.subject | light-emitting transistor | en |
| dc.title | 穿隧接面發光電晶體之直流與射頻特性分析 | zh_TW |
| dc.title | DC and RF Characterization of Tunnel Junction Light-Emitting Transistors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林浩雄(Hao-Hsiung Lin),林恭如(Gong-Ru Lin),黃建璋(Jian-Jang Huang),張書維(Shu-Wei Chang) | |
| dc.subject.keyword | 穿隧接面,發光電晶體, | zh_TW |
| dc.subject.keyword | tunnel junction,light-emitting transistor, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
