請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56669
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳希立 | |
dc.contributor.author | Chen-Han Chuang | en |
dc.contributor.author | 莊承翰 | zh_TW |
dc.date.accessioned | 2021-06-16T05:41:07Z | - |
dc.date.available | 2019-09-04 | |
dc.date.copyright | 2014-09-04 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-11 | |
dc.identifier.citation | [1] 建築節能應用技術手冊,財團法人台灣綠色生產力基金會編印,2013.
[2] http://www.jacobsheating.com/geothermal_basics_0 [3] D.A. Ball, R.D. Fischer, and D.L. Hodgett. “Design methods for ground-source heat pumps” , ASHRAE Transactions, 89(2)(1983) , 416-440. [4] http://www.ngu.no/en-gb/hm/Resources/Ground-source-energy/Borehole-heat-exchanger-/ [5] J.W. Mitchell, G.E. Myers, “An analytical model of the countercurrent heat exchange phenomena”, Biophysics Journal, 8(1968), 897-911. [6] M.L. Allan, “Materials characterization of superplasticized cement–sand grout”, Cement and Concrete Research , 30(2000), 937-942. [7] S.P. Kavanaugh, “ Ground Source Heat Pump Design of Geothermal System for Commercial and Institutional Buildings”, ASHRAE, Atlanta, 1997. [8] Y. Gu, D.L. O’neal, “Development of an equivalent diameter expression for vertical U-tubes used in ground-coupled heat pumps”, ASHRAE Transactions, 104(1998), 347–355. [9] 莊迎春、孫友宏、謝康和,“直埋閉式地源熱泵回填土性能研究”,太陽能學報,2004, 25(2)(2004),pp.216-220。 [10] C. Lee, M. Park, T.B. Nguyen, B. Sohn, J.M. Choi, H. Choi, “Performance evaluation of closed-loop vertical ground heat exchangers by conducting in-situ thermal response tests”, Renew Energy, 42 (2012), pp. 77-83 [11] F. Delaleuxa, X. Py, R. Olives, A. Dominguez, “Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity”, Applied Thermal Engineering , 33-34(2012), 92-99. [12] L.R., “ Theory of earth heat exchangers for the heat pump”, ASHRAE Transactions, 57(1951), 167-188. 47 [13] V Badescu, Simple and accurate model for the ground heat exchanger of a passive house, Renewable Energy, 32 (2007), pp. 845–855 [14] M. Cucumo, S. Cucumo, L. Montoro, A. Vulcano, A one-dimensional transient analytical model for earth-to-air heat exchangers, taking into account condensation phenomena and thermal perturbation from the upper free surface as well as around the buried pipes, International Journal of Heat and Mass Transfer, 51 (2008), pp. 506–516 [15] M. Congedo, G.Colangelo, G.Starace, “CFD simulations of horizontal ground heat exchangers: A comparison among different configuration”, Applied Thermal Engineering , 33-34(2012), 24-32. [16] F. Ascione, L. Bellia, F. Minichiello, “Earth-to-air heat exchangers for Italian climates”, Renewable Energy, 36 (2011), pp. 2177–2188 [17] V. Bansal, R. Misra, G. Das Agrawal, J. Mathur, “Performance analysis of earth–pipe–air heat exchanger for winter heating”, Energy and Buildings, 41 (2009), pp.1151–1154 [18] V. Bansal, R. Misra, G. Das Agrawal, J. Mathur, “Performance analysis of earth–pipe–air heat exchanger for summer cooling”, Energy and Buildings, 42 (2010), pp. 645–648 [19] L. Ozgener, “A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey”, Renew Sustain Energy, Rev (2011) [20] 楊泰和,2014,藉套合多層管及管路外圍對外熱傳之三溫能體熱交換裝置,中華民國新 型專利第 M476252 號。 [21] 室內空氣品質標準,行政院環境保護署環署空字第 1010106229 號令,中華民國 101 年 11 月 23 日。 [22] FP Incropera, AS Lavine, DP DeWitt, Fundamentals of Heat and Mass Transfer, 2011 [23] R.C. Prasad, Analytical solution for a double heat-pipe heat exchanger with non-adiabatic condition at the outer surface, International Communications in Heat and Mass Transfer, 14 (1987), pp. 665–672 48 [24] Clara Peretti, Angelo Zarrella, Michele De Carli, Roberto Zecchin, The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review, Renewable and Sustainable Energy Reviews, 28 (2013), pp. 107–116 [25] ASHRAE, Handbook of Fundamentals, Atlanta, 2005 (Chapter 6). [26] 王啟川,熱交換設計,五南書局,2007 年 6 月。 [27] Kakac S., Shan, R. K. Augn, W., ed. 1997. Hand books of Single-phase Convective Heat Transfer. Wiley, New York [28] J.W. Stevens, Optimal placement depth of air–ground heat transfer systems, Appl. Therm. Eng., 24 (2004), pp. 149–157 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56669 | - |
dc.description.abstract | 近年再生能源受到重視,淺層溫能之應用被視為能降低溫室氣體及達成節能的有效方法,因此潛層溫能陸續開始被應用在各種領域上,其中,與空調系統做結合是最常見的方法之一。
外氣空調系統為解決空氣品質問題,會面臨空調負荷較一般室內循環系統要高,需要耗費更多、額外的電力、能源,才能把溼熱的外氣處理成符合室內舒適性的空氣的問題。因此本研究以數值分析的方式,利用雙套管作為地埋管之熱交換器,與外氣空調系統結合下表現,瞭解其冷卻效能。 本研究利用熱質傳方程式分析內外管流體,並利用數值計算迭代出兩個案例的地埋雙套管內,內管與外管空氣的溫溼度分佈,並延伸計算地埋雙套管的冷卻效率,和單直管進行比較。同時也藉由更改地埋管之相關設計、操作參數來瞭解對地埋雙套管的影響。由研究與計算結果顯示,對於參數變動的部份,增進內外管管徑比、地埋管長度以及降低室內排風溫度可降低出口溫度並提升冷卻率;而增加雙套管的質流率時,雖會提高出口溫度卻可降低冷卻率。此外,在外管與內管質流率固定的情況下,在冷卻率、外氣出口溫度、凝結水量等部份的表現上,皆較同樣條件下之單直管地埋管要好,雙套管之冷卻率多出單直管地埋管約 30~33%。此結果也可做為提升地埋管結合外氣空調系統的效能之基礎。 雙套管在管長距離有限時冷卻率較單直管大、冷卻能力明顯,以及單一管之冷卻率高、出氣溫度低等特點,使其較單直管適用於土壤溫度高出室內排風,或管長距離有限的環境。 | zh_TW |
dc.description.abstract | Recently, regeneration energy has been gradually emphasized. The application of geothermal energy is an effective way to save energy and reduce the emission of greenhouse gas. Now the application of geothermal energy is popular, one of them is to combine with air-conditioning
systems. To retain indoor air quality, outdoor air conditioning system uses more power and electricity to cool and dehumidify the hot and wet fresh air from atmosphere. This study focuses on the results of numerical analysis for the performance of combining ground-air double pipe heat exchanger with outdoor-air conditioning system. In the study, heat and mass transfer equations is used simultaneously to calculate the temperature and humidity profile of the air in both inner and outer pipe of double pipe and the cooling rate of the exchanger. From the results of calculation, the outlet temperature gets lower with higher radius ratio, longer pipe length, and indoor exhaust temperature; low air velocity in pipe also makes outlet temperature cooler, but the cooling rate of the exchanger decrease at the same time. Compare to the traditional EAHE with single pipe, double pipe gets better cooling rate, lower outlet air temperature, and more condensation rate in the same design factors and mass flow rates. The cooling rate of double pipe is about 30 ~ 33% more than single pipe in the case in this study. Thus, this study may be used as a reference to improve the performance of EAHE system. Higher cooling rate and lower outlet air temperature for short pipe makes double pipe is suitable for the case that the temperature of indoor air is lower than the ground or the case with limited pipe length. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:41:07Z (GMT). No. of bitstreams: 1 ntu-103-R99522123-1.pdf: 1986115 bytes, checksum: f138b4d72218132ed57e73162e6ceb08 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 中文摘要 ............................................................................................................................................... i
Abstract .............................................................................................................................................. ii 誌謝 ............................................................................................................................................. iii 目錄 .............................................................................................................................................. v 圖目錄 ............................................................................................................................................ vii 表目錄 ........................................................................................................................................... viii 符號說明 ............................................................................................................................................. ix 第一章 緒論 ...................................................................................................................................... 1 1.1 前言 ................................................................................................................................... 1 1.2 文獻回顧 ........................................................................................................................... 2 1.3 研究動機與目的 ............................................................................................................... 5 第二章 基礎理論 ............................................................................................................................ 12 2.1 非絕熱雙套管熱質傳分析 ............................................................................................. 12 2.1.1 內管流體熱傳分析 ............................................................................................ 13 2.1.2 內管流體熱傳分析 ............................................................................................ 13 2.1.3 外管流體質傳分析 ............................................................................................ 15 2.2 管壁溫度分析 ................................................................................................................. 17 2.2.1 內管管壁溫度分析 ............................................................................................ 17 2.2.2 外管管壁溫度分析 ............................................................................................ 17 第三章 研究方法 ............................................................................................................................ 22 3.1 數值計算 ......................................................................................................................... 22 3.1.1 土壤溫度計算 .................................................................................................... 22 3.1.2 入口端外氣溫度計算 ........................................................................................ 23 3.1.3 管內對流熱傳係數計算 .................................................................................... 24 3.2 數值計算過程 ................................................................................................................. 25 3.3 地埋管效能計算 ............................................................................................................. 26 3.3.1 地埋管冷卻率 .................................................................................................... 27 vi 3.3.2 流體流動耗功 .................................................................................................... 27 第四章 結果與討論 ........................................................................................................................ 29 4.1 網格數對於迭代結果影響之評估 ................................................................................. 29 4.2 地埋管系統於不同案例下之性能分析 ......................................................................... 29 4.2.1 地埋雙套管性能分析 ........................................................................................ 29 4.2.2 地埋雙套管與單直管性能比較 ........................................................................ 30 4.3 地埋雙套管系統於不同參數變動下之性能分析 ......................................................... 31 4.3.1 地埋管質流率變化下之性能分析 .................................................................... 32 4.3.2 地埋管管長變化下之性能分析 ........................................................................ 32 4.3.3 雙套管管徑比變化下之性能分析 .................................................................... 33 4.3.4 室內出風溫度變化下之性能分析 .................................................................... 34 第五章 結論與建議 ........................................................................................................................ 43 5.1 結論 ................................................................................................................................. 43 5.1.1 地埋雙套管與單直管性能分析 ........................................................................ 43 5.1.2 地埋雙套管系統於不同參數變動下之性能分析 ............................................ 44 5.2 建議 ................................................................................................................................. 45 參考文獻 ............................................................................................................................................ 46 | |
dc.language.iso | zh-TW | |
dc.title | 土壤–空氣水平雙套管熱交換分析 | zh_TW |
dc.title | Performance Analysis of Horizontal Double Pipe Earth-Air-Heat-Exchanger | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 卓清松,江沅晉,黃振康 | |
dc.subject.keyword | 淺層溫能,地埋管熱交換器,非絕熱雙套管,外氣空調,熱對流, | zh_TW |
dc.subject.keyword | Geothermal energy,Earth-air heat exchanger,Non-adiabatic double pipe,Outdoor air conditioning system,Heat convection, | en |
dc.relation.page | 48 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。