請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56645
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳譽仁(Yu-Jen Chen) | |
dc.contributor.author | Chien-Yu Yeh | en |
dc.contributor.author | 葉千瑜 | zh_TW |
dc.date.accessioned | 2021-06-16T05:39:41Z | - |
dc.date.available | 2014-11-24 | |
dc.date.copyright | 2014-11-24 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-12 | |
dc.identifier.citation | 1 Woolhead GM DJ, Chard JA, Dieppe PA. Who should have priority for a knee joint replacement? . Rheumatology (Oxford) 2002;41:390-4.
2 Hunter DJ, March L, Sambrook PN. The association of cartilage volume with knee pain. Osteoarthritis Cartilage 2003;11:725-9. 3 Bedson J CP. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. Musculoskelet Disord 2008;9:116. 4 Kessler MA, Glaser C, Tittel S, Reiser M, Imhoff AB. Recovery of the menisci and articular cartilage of runners after cessation of exercise: additional aspects of in vivo investigation based on 3-dimensional magnetic resonance imaging. Am J Sports Med 2008;36:966-70. 5 Eckstein F, Tieschky M, Faber S, Englmeier KH, Reiser M. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anat Embryol (Berl) 1999;200:419-24. 6 Souza RB, Stehling C, Wyman BT, Hellio Le Graverand MP, Li X, Link TM, et al. The effects of acute loading on T1rho and T2 relaxation times of tibiofemoral articular cartilage. Osteoarthritis Cartilage 2010;18:1557-63. 7 Shin CS, Souza RB, Kumar D, Link TM, Wyman BT, Majumdar S. In vivo tibiofemoral cartilage-to-cartilage contact area of females with medial osteoarthritis under acute loading using MRI. J Magn Reson Imaging 2011;34:1405-13. 8 Subburaj K, Souza RB, Stehling C, Wyman BT, Le Graverand-Gastineau MP, Link TM, et al. Association of MR relaxation and cartilage deformation in knee osteoarthritis. J Orthop Res 2012;30:919-26. 9 Palmoski MJ, Brandt KD. Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum 1984;27:675-81. 10 Lee RB, Wilkins RJ, Razaq S, Urban JP. The effect of mechanical stress on cartilage energy metabolism. Biorheology 2002;39:133-43. 11 CL KC. Joint, Connective Tissue, and Bone Disorders and Management. Therapeutic exercise: foundations and techniques: 5th edition. 5th ed;2007. 12 Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF. The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 1987;30:914-8. 13 Chou CT, Pei L, Chang DM, Lee CF, Schumacher HR, Liang MH. Prevalence of rheumatic diseases in Taiwan: a population study of urban, suburban, rural differences. J Rheumatol 1994;21:302-6. 14 Elders MJ. The increasing impact of arthritis on public health. J Rheumatol Suppl 2000;60:6-8. 15 Gupta S, Hawker GA, Laporte A, Croxford R, Coyte PC. The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology (Oxford) 2005;44:1531-7. 16 Zhang Y XL, Nevitt MC, Aliabadi P, Yu W, Qin M, et al. Comparison of the prevalence of knee osteoarthritis between the elderly Chinese population in Beijing and whites in the United States:The Beijing Osteoarthritis Study. . Arthritis Rheum 2001;44:2065-71. 17 Leardini G, Salaffi F, Caporali R, Canesi B, Rovati L, Montanelli R. Direct and indirect costs of osteoarthritis of the knee. Clin Exp Rheumatol 2004;22:699-706. 18 KRM. HD. Knee. Management of Common Musculoskeletal Disorders: Physical Therapy Principles and Methods : fourth edition. ;2006. 19 Gwilym SE, Pollard TC, Carr AJ. Understanding pain in osteoarthritis. J Bone Joint Surg Br 2008;90:280-7. 20 Arendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, et al. Sensitization in patients with painful knee osteoarthritis. Pain 2010;149:573-81. 21 Davis MA, Ettinger WH, Neuhaus JM, Mallon KP. Knee osteoarthritis and physical functioning: evidence from the NHANES I Epidemiologic Followup Study. J Rheumatol 1991;18:591-8. 22 Ettinger WH, Davis MA, Neuhaus JM, Mallon KP. Long-term physical functioning in persons with knee osteoarthritis from NHANES. I: Effects of comorbid medical conditions. J Clin Epidemiol 1994;47:809-15. 23 Guccione AA, Felson DT, Anderson JJ, Anthony JM, Zhang Y, Wilson PW, et al. The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am J Public Health 1994;84:351-8. 24 Creamer P L-CM, Hochberg MC. Where does it hurt? Pain localization in osteoarthritis of the knee. Osteoarthritis Cartilage 1998;6:318-23. 25 Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med 2004;140:441-51. 26 Ayral X, Pickering EH, Woodworth TG, Mackillop N, Dougados M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis -- results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage 2005;13:361-7. 27 PA. S. Pressure-driven intravasation of osseous fat in the pathogensis of osteoarthritic pain. In: Schaible H-G, editor. Pain in osteoarthritis.;2009. 28 Dye SF, Vaupel GL, Dye CC. Conscious neurosensory mapping of the internal structures of the human knee without intraarticular anesthesia. Am J Sports Med 1998;26:773-7. 29 Eckstein F, Hudelmaier M, Putz R. The effects of exercise on human articular cartilage. J Anat 2006;208:491-512. 30 Kijowski R, Stanton P, Fine J, De Smet A. Subchondral bone marrow edema in patients with degeneration of the articular cartilage of the knee joint. Radiology 2006;238:943-9. 31 Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 2003;226:373-81. 32 Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N, Rosendaal FR, Nelissen RG, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 2006;239:811-7. 33 Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004;232:592-8. 34 Phan CM, Link TM, Blumenkrantz G, Dunn TC, Ries MD, Steinbach LS, et al. MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms. Eur Radiol 2006;16:608-18. 35 Hayes CW, Jamadar DA, Welch GW, Jannausch ML, Lachance LL, Capul DC, et al. Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology 2005;237:998-1007. 36 KD. B. Neuromuscular aspects of osteoarthritis. In: Schaible H-G, editor. Pain in knee osteoarthritis.;2009. 37 Cohen NP, Foster RJ, Mow VC. Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sports Phys Ther 1998;28:203-15. 38 Gilmore RS, Palfrey AJ. Chondrocyte distribution in the articular cartilage of human femoral condyles. J Anat 1988;157:23-31. 39 Eckstein F, Reiser M, Englmeier KH, Putz R. In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging--from image to data, from data to theory. Anat Embryol (Berl) 2001;203:147-73. 40 A. M. Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 1976;260:808-9. 41 Arokoski JP, Jurvelin JS, Vaatainen U, Helminen HJ. Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports 2000;10:186-98. 42 Arden N, Nevitt MC. Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol 2006;20:3-25. 43 Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 1988;15:1833-40. 44 McConnell S, Kolopack P, Davis AM. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): a review of its utility and measurement properties. Arthritis Rheum 2001;45:453-61. 45 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957;16:494-502. 46 Buckland-Wright JC, Macfarlane DG, Williams SA, Ward RJ. Accuracy and precision of joint space width measurements in standard and macroradiographs of osteoarthritic knees. Ann Rheum Dis 1995;54:872-80. 47 Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 2006;14 Suppl A:A46-75. 48 Eckstein F, Winzheimer M, Hohe J, Englmeier KH, Reiser M. Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging. Osteoarthritis Cartilage 2001;9:101-11. 49 Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, et al. In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 2005;64:291-5. 50 Cheng J SE BRIea. Detection of Proteoglycan Content in Human Osteoarthritic Cartilage Samples with Magnetic Resonance T1rho Imaging. Proc. Intl. Soc. Mag. Reson. Med. 2008:16. 51 Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011;31:37-61. 52 Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004;8:355-68. 53 Hashemi R.H. BWG, Lisanti C.J. T1,T2, and T2*. MRI: The Basics, Third Edition. Third ed;2010. 54 Hashemi R.H. BWG, Lisanti C.J. Tissue Contrast: Some Clinical Applications. MRI: The Basics, Third Edition. 2010:57-9. 55 Meyer RA, Prior BM. Functional magnetic resonance imaging of muscle. Exerc Sport Sci Rev 2000;28:89-92. 56 Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA. MRI of brain iron. AJR Am J Roentgenol 1986;147:103-10. 57 Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A. Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology 1993;35:119-24. 58 Cotofana S, Buck R, Wirth W, Roemer F, Duryea J, Nevitt M, et al. Cartilage thickening in early radiographic knee osteoarthritis: a within-person, between-knee comparison. Arthritis Care Res (Hoboken) 2012;64:1681-90. 59 Nishii T, Kuroda K, Matsuoka Y, Sahara T, Yoshikawa H. Change in knee cartilage T2 in response to mechanical loading. J Magn Reson Imaging 2008;28:175-80. 60 Mosher TJ SH, Collins C, Liu Y, Hancy J, Dardzinski BJ, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology 2005;234:245-9. 61 Liess C, Lusse S, Karger N, Heller M, Gluer CC. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthritis Cartilage 2002;10:907-13. 62 Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am 1982;64:88-94. 63 Nag D, Liney GP, Gillespie P, Sherman KP. Quantification of T(2) relaxation changes in articular cartilage with in situ mechanical loading of the knee. J Magn Reson Imaging 2004;19:317-22. 64 Kaab MJ, Ito K, Clark JM, Notzli HP. Deformation of articular cartilage collagen structure under static and cyclic loading. J Orthop Res 1998;16:743-51. 65 Kovar PA, Allegrante JP, MacKenzie CR, Peterson MG, Gutin B, Charlson ME. Supervised fitness walking in patients with osteoarthritis of the knee. A randomized, controlled trial. Ann Intern Med 1992;116:529-34. 66 Andriacchi TP, Mundermann A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol 2006;18:514-8. 67 Lukoschek M, Boyd RD, Schaffler MB, Burr DB, Radin EL. Comparison of joint degeneration models. Surgical instability and repetitive impulsive loading. Acta Orthop Scand 1986;57:349-53. 68 Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis Cartilage 2005;13:769-81. 69 Hanna FS, Teichtahl AJ, Wluka AE, Wang Y, Urquhart DM, English DR, et al. Women have increased rates of cartilage loss and progression of cartilage defects at the knee than men: a gender study of adults without clinical knee osteoarthritis. Menopause 2009;16:666-70. 70 Ding C, Cicuttini F, Blizzard L, Scott F, Jones G. A longitudinal study of the effect of sex and age on rate of change in knee cartilage volume in adults. Rheumatology (Oxford) 2007;46:273-9. 71 Ding C, Cicuttini F, Scott F, Glisson M, Jones G. Sex differences in knee cartilage volume in adults: role of body and bone size, age and physical activity. Rheumatology (Oxford) 2003;42:1317-23. 72 Jones G, Glisson M, Hynes K, Cicuttini F. Sex and site differences in cartilage development: a possible explanation for variations in knee osteoarthritis in later life. Arthritis Rheum 2000;43:2543-9. 73 Cicuttini F, Forbes A, Morris K, Darling S, Bailey M, Stuckey S. Gender differences in knee cartilage volume as measured by magnetic resonance imaging. Osteoarthritis Cartilage 1999;7:265-71. 74 Ledingham J, Regan M, Jones A, Doherty M. Radiographic patterns and associations of osteoarthritis of the knee in patients referred to hospital. Ann Rheum Dis 1993;52:520-6. 75 Slemenda C, Brandt KD, Heilman DK, Mazzuca S, Braunstein EM, Katz BP, et al. Quadriceps weakness and osteoarthritis of the knee. Ann Intern Med 1997;127:97-104. 76 Weiss E. Knee osteoarthritis, body mass index and pain: data from the Osteoarthritis Initiative. Rheumatology (Oxford) 2014 77 Cicuttini FM, Wluka AE, Wang Y, Davis SR, Hankin J, Ebeling P. Compartment differences in knee cartilage volume in healthy adults. J Rheumatol 2002;29:554-6. 78 Lusse S, Claassen H, Gehrke T, Hassenpflug J, Schunke M, Heller M, et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging 2000;18:423-30. 79 Stammberger T, Eckstein F, Michaelis M, Englmeier KH, Reiser M. Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation. Magn Reson Imaging 1999;17:1033-42. 80 Carballido-Gamio J, Bauer JS, Stahl R, Lee KY, Krause S, Link TM, et al. Inter-subject comparison of MRI knee cartilage thickness. Med Image Anal 2008;12:120-35. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56645 | - |
dc.description.abstract | 背景: 膝關節退化性關節炎被定義為關節軟骨退化磨損伴隨硬骨不正常增生和滑液囊發炎,為老年人常見之慢性疾病,同時也是造成失能的一個重要成因。關節軟骨機械特性改變使動作過程中有更多壓力傳遞至軟骨下骨,被認為可能是此類型患者疼痛的來源之一。目前核磁共振影像相關研究大多是觀察此類型患者軟骨在靜態負重後的變化,無法呈現日常動態活動像是行走時軟骨承重後的變化。
目的: (一)比較退化性關節炎患者與沒有膝關節症狀之女性其關節軟骨性質與型態是否存在差異; (二)比較退化性關節炎患者與沒有膝關節症狀之女性其關節軟骨在十分鐘踏步測試後的性質與型態的變化。 方法: 本實驗收集膝關節退化性關節炎患者與沒有膝關節症狀之女性,在十分鐘踏步前後收取膝關節核磁共振影像,分析關節軟骨性質(橫向鬆弛時間)與型態(體積、厚度)的變化,此外會使用問卷(The Western Ontario and McMaster Universities Osteoarthritis index, WOMAC)來紀錄膝關節退化性關節炎患者的臨床症狀。利用獨立樣本t檢定(Independent t test)比較兩組基本資料及關節軟骨踏步前的狀態,雙因子混和設計變異數分析(Two-way mixed-design ANOVA)比較兩組在踏步前後關節軟骨性質與型態的變化,顯著水平定在0.05。若任何交互作用達顯著,將進行事後分析,並使用Bonferroni做調整。如果關節軟骨變化會因為組別不同而有所不同(group*time interaction),則會採用Pearson相關係數評估軟骨性質與型態與問卷分數的相關性。 結果: 共十名退化性關節炎患者(年齡:61.3±9.4、身體質量指數:26.5±2.9)與十名沒有膝關節症狀之女性(年齡:55.2±6.51、身體質量指數:22.5±1.4)參與本試驗。退化性關節炎患者之身體質量指數顯著高於沒有膝關節症狀之女性(p<0.001),沒有膝關節症狀之女性其外側脛骨軟骨則顯著較退化性關節炎患者厚(p=0.045),在年齡、關節軟骨性質與其他區域之軟骨型態沒有顯著差異。十分鐘踏步後,關節軟骨的變化並沒有因為組別不同而有所不同,兩組在內側股骨區域的橫向鬆弛時間在踏步後與踏步前相比都呈現顯著下降(35.83±12.41ms vs. 29.17±10.9ms),在內側脛骨體積於踏步後七分鐘與踏步後二十一分鐘呈現顯著增加(1.4±0.27mm vs. 1.45±0.26mm),外側脛骨厚度與體積則存在組間差異。 結論: 退化性關節炎患者與沒有膝關節症狀之女性在十分鐘踏步前後膝關節軟骨在性質與型態上的變化並沒有顯著差異,但兩組在踏步十分鐘後內側股骨區域橫向鬆弛時間都有下降的趨勢。不同的身體質量指數可能是造成兩組症狀有無的原因。 | zh_TW |
dc.description.abstract | Background: Knee osteoarthritis (OA) is characterized as a progressive loss of articular cartilage associated with bone hypertrophy and capsule thickening, which is commonly affecting elderly population and acting as a major cause of disability. Although articular cartilage is aneural and avascular in nature, mechanical property changes in degenerative cartilage may lead to an increase in joint stress transmitted to subchondral bone that causes pain during weight bearing activities. However, previous studies only used Magnetic Resonance Imaging (MRI) to investigate cartilage behavior after static loading which does not truly represent cartilage responses in daily activities.
Purposes: (1) to evaluate articular cartilage morphology and property difference between knee OA patients and asymptomatic female controls (2) to compare articular cartilage morphology and property changes after ten minutes stepping exercise between knee OA patients and asymptomatic female controls Methods: Knee OA female and asymptomatic female controls were recruited in this study. Knee articular cartilage morphology (volume and thickness) and property (T2 relaxation time) before and after 10 min stepping exercise were measured and compared between control and knee OA individuals. WOMAC questionnaire was used to document clinical symptoms and functional deficits in knee OA population. Independent t test was used to compare demographic data and baseline cartilage condition between groups. Two-way mixed-design ANOVA were used to compare cartilage property and morphology changes before and after ten minutes stepping between groups. The alpha level was set at 0.05. Post hoc analysis with Bonferonni adjustment was performed if any significance effect was found. If cartilage changes were significance difference between group (group*time interaction), Pearson correlation coefficient were used to analyze correlation between cartilage changes and WOMAC score. Results: Ten knee OA patients(age:61.3±9.4、BMI:26.5±2.9) and ten asymptomatic female controls (age:55.2±6.51、BMI:22.5±1.4) were recruited in this study. BMI of the knee OA group was significant higher when compared to the control group (p<0.001). Baseline lateral tibial cartilage thickness was significant higher in asymptomatic controls compare to knee OA group (p=0.045). There were no significant difference in age, cartilage property and cartilage morphology in other regions between groups. Two-way mixed ANOVA revealed no significant differences on cartilage property and morphology changes before and after dynamic loading between groups. Both groups showed significant decreased T2 relaxation time in medial femoral cartilage region (35.83±12.41ms vs. 29.17±10.9ms) after stepping, increased medial tibial cartilage volume(1.4±0.27mm vs. 1.45±0.26mm) between M2 (post loading 7min) and M4 (post loading 21min). Lateral tibial cartilage volume and thickness were significant difference between knee OA group and control group. Conclusion: There were no significant differences in cartilage property and morphology between knee OA patients and asymptomatic controls before and after ten minutes stepping. Decrease T2 relaxation time in medial femoral cartilage region was identified in both group after ten minutes dynamic loading. Different BMI may cause symptoms in knee OA group. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:39:41Z (GMT). No. of bitstreams: 1 ntu-103-R00428013-1.pdf: 1524153 bytes, checksum: ce4d7095ce1d301302d83c3b8452efaf (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書 ii
誌謝 iii 中文摘要 iv ABSTRACT vi Chapter 1 Introduction 1 1.1 Background 1 1.2 Purposes 3 1.3 Research questions 4 1.4 Hypotheses 4 1.5 Research significance 6 Chapter 2 Literature Review 7 2.1 Osteoarthritis at the Knee 7 2.2 The source of pain in knee OA population 8 2.3 Articular cartilage in OA knee 12 2.4 Nowadays clinical diagnosis and assessment of knee OA 15 2.5 Current imaging approaches to quantify articular cartilage morphology 17 2.6 Current imaging approaches to identify articular cartilage property 18 2.7 Articular cartilage responses to loading 21 Chapter 3 Research Methods 26 4.1 Study design 26 4.2 Participants 26 4.3 Instrumentation and procedure 28 4.4 MRI image analyses 30 4.5 Statistical analysis 30 Chapter 4 Results 32 4.1 Demographic data 32 4.2 Reliability of outcome measures 32 4.3 T2 relaxation time 33 4.4 Cartilage volume 33 4.5 Cartilage thickness 34 Chapter 5 Discussion 36 Chapter 6 Conclusion 43 References 44 Tables 51 Lists of figures 61 Appendices 72 | |
dc.language.iso | en | |
dc.title | 退化性關節炎患者關節軟骨在動態負重後的變化 | zh_TW |
dc.title | Quantifying Changes in Articular Cartilage with respect to Dynamic Loading in Patients with Knee Osteoarthritis | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王興國(Hsing-Kuo Wang),游治維(Chih-Wei Yu) | |
dc.subject.keyword | 核磁共振,動態負重,關節軟骨,退化性關節炎, | zh_TW |
dc.subject.keyword | MRI,Dynamic loading,Articular cartilage,Knee osteoarthritis, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
顯示於系所單位: | 物理治療學系所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。