請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56636完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪淑蕙(Shu-Huei Hung) | |
| dc.contributor.author | Tzu-Yun Liao | en |
| dc.contributor.author | 廖子芸 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:39:10Z | - |
| dc.date.available | 2015-08-17 | |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-12 | |
| dc.identifier.citation | Anderson, D. L. (1965). Recent evidence concerning the structure and composition of the earth's mantle. Phys. Chem. Earth., 6, 1-131.
Becker, T. W., & Boschi, L. (2002). A comparison of tomographic and geodynamic mantle models. Geochem. Geophy. Geosy.3(1). Burke, K., Steinberger, B., Torsvik, T. H., & Smethurst, M. A. (2008). Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth. Planet. Sc. Lett., 265(1), 49-60. Burke, K., & Torsvik, T. H. (2004). Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth. Planet. Sc. Lett., 227(3), 531-538. Catalli, K., Shim, S.-H., & Prakapenka, V. (2009). Thickness and Clapeyron slope of the post-perovskite boundary. Nature, 462(7274), 782-785. Chapman, C. (2004). Fundamentals of seismic wave propagation: Cambridge University Press. Cobden, L., & Thomas, C. (2013). The origin of D' reflections: a systematic study of seismic array data sets. Geophys. J. Int., 194(2), 1091-1118. Cormier, V. (1986). Synthesis of body waves in transversely isotropic earth models. B. Seismol. Soc. Am., 76(1), 231-240. Davies, G. F., & Richards, M. A. (1992). Mantle convection. Journal of Geology, 151-206. Doornbos, D., Spiliopoulos, S., & Stacey, F. (1986). Seismological properties of D' and the structure of a thermal boundary layer. Phys. Earth. Planet. In., 41(4), 225-239. Dziewonski, A. M. (1984). Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Goephys. Res-Sol. Ea. (1984, 89(B7), 5929-5952. Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth. Planet. In., 25(4), 297-356. Emery, V., Maupin, V., & Nataf, H.-C. (1999). Scattering of S waves diffracted at the core—mantle boundary: forward modelling. Geophys. J. Int., 139(2), 325-344. Ford, S. R., Garnero, E. J., & McNamara, A. K. (2006). A strong lateral shear velocity gradient and anisotropy heterogeneity in the lowermost mantle beneath the southern Pacific. J. Goephys. Res-Sol. Ea. (1978–2012), 111(B3). Fukao, Y. (1994). Geologic implication of the whole mantle P-wave tomography. J. Geol. Soc. Japan, 100, 4-23. Garnero, E. J., & Lay, T. (1997). Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska. J. Goephys. Res-Sol. Ea. (1977), 102(B4), 8121-8135. Grand, S. P., van der Hilst, R. D., & Widiyantoro, S. (1997). Global seismic tomography: A snapshot of convection in the Earth. GSA Today, 7(4), 1-7. Grocholski, B., Catalli, K., Shim, S.-H., & Prakapenka, V. (2012). Mineralogical effects on the detectability of the postperovskite boundary. P. Natl. Acad. Sci., 109(7), 2275-2279. Hernlund, J. W., & Tackley, P. J. (2007). Some dynamical consequences of partial melting in Earth’s deep mantle. Phys. Earth. Planet. In., 162(1), 149-163. Hernlund, J. W., Thomas, C., & Tackley, P. J. (2005). A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle. Nature, 434(7035), 882-886. Houser, C., Masters, G., Shearer, P., & Laske, G. (2008). Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int., 174(1), 195-212. Hutko, A. R., Lay, T., Garnero, E. J., & Revenaugh, J. (2006). Seismic detection of folded, subducted lithosphere at the core–mantle boundary. Nature, 441(7091), 333-336. Iitaka, T., Hirose, K., Kawamura, K., & Murakami, M. (2004). The elasticity of the MgSiO3 post-perovskite phase in the Earth's lowermost mantle. Nature, 430(6998), 442-445. Ishii, M., & Tromp, J. (2004). Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys. Earth. Planet. In., 146(1), 113-124. Karato, S.-i. (1998). Some remarks on the origin of seismic anisotropy in the D' layer. Earth. Planets. Space., 50, 1019-1028. Kawai, K., & Geller, R. J. (2010). Waveform inversion for localized seismic structure and an application to D' structure beneath the Pacific. J. Goephys. Res-Sol. Ea. (2010), 115(B1). Kendall, J. M., & Silver, P. (1998). Investigating causes of D' anistropy. The core-mantle boundary region, 97-118. Kennett, B., Engdahl, E., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122(1), 108-124. Kennett, B. N., & Engdahl, E. (1991). Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105(2), 429-465. Komatitsch, D., Vinnik, L. P., & Chevrot, S. (2010). SHdiff‐SVdiff splitting in an isotropic Earth. J. Goephys. Res-Sol. Ea. (1978–2012), 115(B7). Kuo, B. Y., Garnero, E. J., & Lay, T. (2000). Tomographic inversion of S–SKS times for shear velocity heterogeneity in D' : Degree 12 and hybrid models. J. Goephys. Res-Sol. Ea. (2000), 105(B12), 28139-28157. Lay, T., & Garnero, E. J. (2004). Core‐mantle boundary structures and processes. The State of the Planet: Frontiers and Challenges in Geophysics, 25-41. Lay, T., & Helmberger, D. V. (1983). A lower mantle S-wave triplication and the shear velocity structure of D'. Geophys. J. Int., 75(3), 799-837. Lay, T., Hernlund, J., Garnero, E. J., & Thorne, M. S. (2006). A post-perovskite lens and D'heat flux beneath the central Pacific. Science, 314(5803), 1272-1276. Lay, T., Williams, Q., Garnero, E. J., Kellogg, L., & Wysession, M. E. (1998). Seismic wave anisotropy in the D' region and its implications. The core-mantle boundary region, 299-318. Long, M. D., Xiao, X., Jiang, Z., Evans, B., & Karato, S.-i. (2006). Lattice preferred orientation in deformed polycrystalline (Mg, Fe) O and implications for seismic anisotropy in D'. Phys. Earth. Planet. In., 156(1), 75-88. Mainprice, D., Tommasi, A., Ferre, D., Carrez, P., & Cordier, P. (2008). Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-Perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle. Earth. Planet. Sc. Lett., 271(1), 135-144. Mao, W. L., Mao, H.-k., Sturhahn, W., Zhao, J., Prakapenka, V. B., Meng, Y., . . . Hemley, R. J. (2006). Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science, 312(5773), 564-565. Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., & Schilling, F. R. (2009). Single-crystal elasticity of (Mg0.9Fe0.1) O to 81 GPa. Earth. Planet. Sc. Lett., 287(3), 345-352. Masters, G., Johnson, S., Laske, G., Bolton, H., & Davies, J. (1996). A shear-velocity model of the mantle [and discussion]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 354(1711), 1385-1411. Masters, G., Laske, G., Bolton, H., & Dziewonski, A. (2000). The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. Earth's deep interior: mineral physics and tomography from the atomic to the global scale, 63-87. McNamara, A. K., & Zhong, S. (2005). Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437(7062), 1136-1139. Merkel, S., Kubo, A., Miyagi, L., Speziale, S., Duffy, T. S., Mao, H.-k., & Wenk, H.-R. (2006). Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures. Science, 311(5761), 644-646. Moore, M. M., Garnero, E. J., Lay, T., & Williams, Q. (2004). Shear wave splitting and waveform complexity for lowermost mantle structures with low‐velocity lamellae and transverse isotropy. J. Goephys. Res-Sol. Ea. (2004), 109(B2). Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Ohishi, Y. (2004). Post-perovskite phase transition in MgSiO3. Science, 304(5672), 855-858. Nowacki, A. (2013). Seismic Anisotropy and Deformation in the Lowermost Mantle Plate Deformation from Cradle to Grave (pp. 9-60): Springer. Oganov, A. R., & Ono, S. (2005). The high-pressure phase of alumina and implications for Earth's D' layer. P. Natl. Acad. Sci. of the United States of America, 102(31), 10828-10831. Ohta, K., Hirose, K., Lay, T., Sata, N., & Ohishi, Y. (2008). Phase transitions in pyrolite and MORB at lowermost mantle conditions: implications for a MORB-rich pile above the core–mantle boundary. Earth. Planet. Sc. Lett., 267(1), 107-117. Q., W. (1998). The temperature contrast across D'. Washington, DC:AGU: Gurnis M., Wysession M.E., Knittle E., Buffett B.A. Ritsema, J., Deuss, A., Van Heijst, H., & Woodhouse, J. (2011). S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int., 184(3), 1223-1236. Rost, S., Garnero, E. J., Williams, Q., & Manga, M. (2005). Seismological constraints on a possible plume root at the core–mantle boundary. Nature, 435(7042), 666-669. Savage, M. (1999). Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Reviews of Geophysics, 37(1), 65-106. Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation. J. Goephys. Res-Sol. Ea. (1978–2012), 96(B10), 16429-16454. Stein, S., & Wysession, M. (2009). An introduction to seismology, earthquakes, and earth structure: John Wiley & Sons. Steinberger, B., & O'Connell, R. J. (1998). Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int., 132(2), 412-434. Tan, E., & Gurnis, M. (2007). Compressible thermochemical convection and application to lower mantle structures. J. Goephys. Res-Sol. Ea. (1978–2012), 112(B6). Thorne, M. S., & Garnero, E. J. (2004). Inferences on ultralow‐velocity zone structure from a global analysis of SPdKS waves. J. Goephys. Res-Sol. Ea. (1978–2012), 109(B8). To, A., Romanowicz, B., Capdeville, Y., & Takeuchi, N. (2005). 3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling. Earth. Planet. Sc. Lett., 233(1), 137-153. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J., & Ashwal, L. D. (2010). Diamonds sampled by plumes from the core-mantle boundary. Nature, 466(7304), 352-355. Tromp, J. (2001). Inner-core anisotropy and rotation. Annual Review of Earth and Planetary Sciences, 29(1), 47-69. Vinnik, L., Kind, R., Kosarev, G., & Makeyeva, L. (1989). Azimuthal anisotropy in the lithosphere from observations of long-period S-waves. Geophys. J. Int., 99(3), 549-559. Vinnik, L., Kosarev, G., & Makeeva, L. (1984). Lithosphere anisotropy from the observation of SKS and SKKS waves. Doklady Akademii Nauk SSSR, 278(6), 1335-1339. Wustefeld, A., Bokelmann, G., Barruol, G., & Montagner, J.-P. (2009). Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Phys. Earth. Planet. In., 176(3), 198-212. Wang, Y., & Wen, L. (2007). Complex seismic anisotropy at the border of a very low velocity province at the base of the Earth's mantle. J. Goephys. Res-Sol. Ea. (2007), 112(B9). Williams, Q. (1998). The temperature contrast across D'. The core-mantle boundary region, 73-81. Woodhouse, J. (1988). The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun. Seismological Algorithms, 321-370. Wookey, J., & Kendall, J. M. (2007). Seismic anisotropy of post‐perovskite and the lowermost mantle. Post-perovskite: the last mantle phase transition, 171-189. Wookey, J., Stackhouse, S., Kendall, J.-M., Brodholt, J., & Price, G. D. (2005). Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature, 438(7070), 1004-1007. Wright, C., & Lyons, J. (1980). Further evidence for radial velocity anomalies in the lower mantle. Pure. Appl. Geophys., 119(1), 137-162. Yamazaki, D., & Karato, S.-i. (2002). Fabric development in (Mg, Fe) O during large strain, shear deformation: implications for seismic anisotropy in Earth’s lower mantle. Phys. Earth. Planet. In., 131(3), 251-267. Yamazaki, D., & Karato, S. I. (2007). Lattice‐Preferred Orientation of Lower Mantle Materials and Seismic Anisotropy in the D' Layer. Post-perovskite: the last mantle phase transition, 69-78. Yamazaki, D., Yoshino, T., Ohfuji, H., Ando, J.-i., & Yoneda, A. (2006). Origin of seismic anisotropy in the D' layer inferred from shear deformation experiments on post-perovskite phase. Earth. Planet. Sc. Lett., 252(3), 372-378. Yang, H.-Y., Zhao, L., & Hung, S.-H. (2010). Synthetic seismograms by normal-mode summation: a new derivation and numerical examples. Geophys. J. Int., 183(3), 1613-1632. Zhong, S., & Hager, B. H. (2003). Entrainment of a dense layer by thermal plumes. Geophys. J. Int., 154(3), 666-676. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56636 | - |
| dc.description.abstract | D”是位在地幔與地核交界處上方平均厚度約250公里的速度層。對於地幔對流系統而言,D”層被視為底部受熱且化學成分特殊的熱化邊界層,同時是向上湧升地幔熱柱起源地以及向下沉隱沒海洋板塊最終棲息的位置。地震學研究指出,此區域擁有複雜的側向速度非均質與非均向性。本研究量測1997年到2012年、規模大於5.8、震央距40度到145度之間的遠震於全球測站所記錄的剪力波走走時異常變化來探討D”的速度構造特性。
結合群集分析和波形交互相關法同時將相似波形分組和量測相對全球側向平均的一維速度模型ak135的走時殘差,並剔除低訊噪比的資料。然後將不同兩波相所量測到走時殘差再透過相同測站配對求得差分走時殘差,包括S(Sdiff)-SKS、ScS-S、ScS2-ScS和ScS3-ScS四種走時資料用來研究D”區域剪力波側向速度非均質性。結果指出在環太平洋地區,差分走時殘差以負值為主,代表此區域底下的D”層剪力波速度高於全球平均值,反映古老殘餘的太平洋隱沒板塊物質;而在太平洋中間與非洲地區,差分走時殘差殘差以正值為主,代表此區域底下的D”層速度較低,反映兩超大規模的地幔熱柱慢速構造的存在。而在太平洋東北側與西伯利亞地區,則觀測到差分走時殘差正負參雜的情形,顯示這些區域底下的D”存在小尺度複雜的速度構造。 透過量測的S(Sdiff)波相走時殘差進一步分析其SV和SH分量的走時差,即所謂的剪力波分離現象來研究D”的非均向性。經修正完上地幔非均向性影響後,顯示在震央距較小的測站SH和SV分量的走時差通常在±1秒內,並隨震央距拉長有逐漸增加的趨勢。在阿留申隱沒帶、加勒比海隱沒帶底下高速區,大多觀測到SH分量早到,主要解釋成在D”層平躺的殘餘板塊物質本身內部礦物快軸呈水平優選排列所造成。但考慮到Sdiff波的SV和SH有限頻寬走時異常對三維非均質速度構造敏感度不同亦會造成SH分量早到的視分離現象,因此此區域所觀察到的剪力波分離應同時受到D”本身彈性非均向性性質以及有限頻寬波傳效應所影響。而在太平洋南側與非洲西側的低速區,同時觀測到SV以及SH早到的現象。前人研究指出SH在低速D”區早到的情形與核幔邊界附近發生部分熔融岩漿受水平向的底層地幔流應力作用形成構造上的優選排列有關,但該模型無法解釋SV早到的現象。相反地,有限頻寬波形模擬顯示Sdiff波在慢速D”層傳遞時會造成SV早到,表示在部分慢速D”區域本身的彈性非均向性可能不大,使得SV和SH的走時分離主要是受到有限頻寬敏感度差異所控制。 | zh_TW |
| dc.description.abstract | The D’’ region which lies in the lowermost ~250 km of the mantle has long been postulated as a major thermo-chemical boundary layer in the earth’s dynamic evolution, where the upwelling plumes most likely originate and the downwelling cold slabs terminate. Numerous seismological investigations have found D” exist both strong velocity heterogeneity and anisotropy.
In this study, we collect broadband waveforms from earthquakes with epicentral distances of 40-145o and magnitudes greater than 5.8 during 1997-2012. A cluster analysis with waveform cross correlation is employed to measure differential traveltime residuals of S(Sdiff)-SKS, ScS-S, ScS2-ScS, ScS3-ScS relative to predictions of the spherically-symmetric earth model ak135. Our results show the phase pairs passing through D” beneath the Circum-Pacific Rim generally have large negative residuals while those through D” beneath the Central Pacific and Africa have positive residuals. The residual variations are in agreement with large-scale degree 2 pattern of mantle convective circulation in the lowermost mantle as revealed from global tomographic images, in which the circum-Pacific ring of high velocities associated with the remnants of ancient subducted slabs surround the two antipodal large low-velocity regimes originating from the upwelling hot superplumes anchored at the core-mantle boundary beneath the central Pacific and African. Besides, the residuals from the paths through the Northeastern Pacific plate and Siberia give both positive and negative values within small sampling areas in D”, suggesting that these regions may exists complex, small-scale structural heterogeneity. The split times between the vertically (SV) and transversely (SH) polarized arrivals of S(Sdiff) phases after correcting for upper mantle anisotropy are further analyzed to investigate D” seismic anisotropy. We observe both positive and negative SV-SH split times in seismically slow regions; however, the proposed viable scenario in which partial melts produced at the base of the hot mantle plumes in D” have been aligned horizontally by the basal boundary flow can only explain advanced SH arrivals relative to SV. Positive SV-SH times (i.e., SH traveling faster) found in high-velocity regions are consistent with intrinsic LPO of anisotropic minerals in horizontally-lying slabs and apparent splitting resulting from finite-frequency sensitivity. Numerical waveform modeling has indicated that because of difference of the finite-frequency sensitivities, the SHdiff phase arrivals would advance and delay with respect to SVdiff while propagating through high- and low-velocity D” regions, respectively, similar to our observed apparent splitting between them. Both finite-frequency effects and elastic anisotropy may equally contribute to the observed splitting results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:39:10Z (GMT). No. of bitstreams: 1 ntu-103-R00224208-1.pdf: 8013755 bytes, checksum: e9633409ba0e34678283610520297828 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 i ABSTRACT iii 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 D”與下地幔 1 1.2 全球D”速度構造 4 1.3 D”速度不連續面和下地幔組成礦物相變 4 1.4 D”熱化邊界層與地幔對流 9 1.5 D”區域彈性非均向性 10 1.6 研究動機與目的 20 第二章 資料與方法 21 2.1 資料來源 21 2.2 資料前置處理 22 2.3 差分走時殘差(differential traveltime residual) 26 2.3.1 波相與波線路徑 26 2.3.2 群集分析(cluster analysis) 28 2.3.3 差分走時殘差量測方法 35 2.4 研究D”非均向性資料篩選和修正 36 2.4.1 波形資料篩選 36 2.4.2 上地幔非均向性修正 39 2.5 量測S(Sdiff)波分離時間方法 41 第三章 結果與討論 43 3.1 不同差分走時殘差結果 43 3.1.1 S(Sdiff)-SKS差分走時殘差 44 3.1.2 ScS-S 差分走時殘差 47 3.1.3 ScS2-ScS與ScS3-ScS差分走時殘差 50 3.2 D”非均質性統整與討論 56 3.3 非均向性觀測結果 61 3.3.1 阿拉斯加區域 61 3.3.2 加勒比海區域 65 3.3.3 太平洋南側 68 3.3.4 非洲西側 70 3.4 D”非均向性統整與討論 72 3.4.1 經過D”為快速構造的非均向特性 72 3.4.2 經過D”為慢速構造的非均向特性 73 第四章 結論 74 參考文獻 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | D’’ | zh_TW |
| dc.subject | 剪力波分離 | zh_TW |
| dc.subject | 彈性非均向性 | zh_TW |
| dc.subject | 下地幔 | zh_TW |
| dc.subject | 剪力波速度側向非均質性 | zh_TW |
| dc.subject | elastic anisotropy | en |
| dc.subject | lower mantle | en |
| dc.subject | D’’ | en |
| dc.subject | shear velocity heterogeneity | en |
| dc.subject | shear wave splitting | en |
| dc.subject | elastic anisotropy | en |
| dc.subject | lower mantle | en |
| dc.subject | D’’ | en |
| dc.subject | shear velocity heterogeneity | en |
| dc.subject | shear wave splitting | en |
| dc.title | 利用有限頻寬走時殘差探討全球D'區域剪力波速度構造之非均質與非均向特性 | zh_TW |
| dc.title | Constraints on Shear Wave Velocity Heterogeneity and Anisotropy in D” from Finite-Frequency Differential Traveltime Residual Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭本垣(2 Ban-Yuan Kuo),趙里(Zhao Li),龔源成(Yuan-Cheng Gung),喬凌雲(Ling-Yun Chiao) | |
| dc.subject.keyword | 下地幔,D’’,剪力波速度側向非均質性,剪力波分離,彈性非均向性, | zh_TW |
| dc.subject.keyword | lower mantle,D’’,shear velocity heterogeneity,shear wave splitting,elastic anisotropy, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 7.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
