請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56629完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李嗣涔(Si-Chen Lee) | |
| dc.contributor.author | Shang-Ru Tsai | en |
| dc.contributor.author | 蔡尚儒 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:38:46Z | - |
| dc.date.available | 2017-08-17 | |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-12 | |
| dc.identifier.citation | 1.Hammer DX, Seigert J, Stone MO et al. Infrared spectral sensitivity of Melanophila acuminata. Journal of Insect Physiology 2001; 47: 1441-50.
2.Schmitz A, Sehrbrock A, Schmitz H. The analysis of the mechanosensory origin of the infrared sensilla in Melanophila acuminata (Coeloptera; Buprestidae) adduces new insight into the transduction mechanism. Arthropod Struct Dev 2007; 36: 291-303. 3.Trushin MV. Culture-to-culture physical interactions causes the alteration in red and infrared light stimulation of Escherichia coli growth rate. J Microbiol Immunol Infect 2003; 36: 149-52. 4.Tsai S-R, Huang T-C, Liang C-M et al. The effect of narrow band infrared radiation on the growth of Escherichia coli. Applied Physics Letters 2011; 99: 163704. 5.Lage C, Teixeira PCN, Leitao AC. Non-coherent visible and infrared radiation increase survival to UV (254 nm) in Escherichia coli K12. Journal of Photochemistry and Photobiology B: Biology 2000; 54: 155-61. 6.Kochevar IE TC, Krutmann J. Fundamentals of cutaneous photobiology and photoimmunology. Fitzpatrick’s Dermatology in General Medicine, 7th ed 2008. 7.Longo L. Non surgical laser and light in the treatment of chronic diseases: a review based on personal experiences. Laser Physics Letters 2010; 7: 771-86. 8.Lucas C, Criens-Poublon LJ, Cockrell CT, de Haan RJ. Wound Healing in Cell Studies and Animal Model Experiments by Low Level Laser Therapy; Were Clinical Studies Justified? A Systematic Review. Lasers in Medical Science 2002; 17: 110-34. 9.Yamashita K. Far Infrared Ray Radiation Inhibits the Proliferation of A549, HSC3 and Sa3 Cancer Cells through Enhancing the Expression of ATF3 Gene. Journal of Electromagnetic Analysis and Applications 2010; 02: 382-94. 10. Calles C, Schneider M, Macaluso F et al. Infrared A radiation influences the skin fibroblast transcriptome: mechanisms and consequences. J Invest Dermatol 2010; 130: 1524-36. 11.Jenkins MW, Wang YT, Doughman YQ et al. Optical pacing of the adult rabbit heart. Biomed Opt Express 2013; 4: 1626-35. 12.Lapchak PA. Transcranial near-infrared laser therapy applied to promote clinical recovery in acute and chronic neurodegenerative diseases. Expert Rev Med Devices 2012; 9: 71-83. 13.Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics 2005; 38: 2543. 14.Karu TI. Mitochondrial Signaling in Mammalian Cells Activated by Red and Near-IR Radiation. Photochemistry and photobiology 2008; 84: 1091-9. 15.Shapiro MG, Homma K, Villarreal S et al. Infrared light excites cells by changing their electrical capacitance. Nat Commun 2012; 3: 736. 16.Rojas JC, Gonzalez-Lima F. Neurological and psychological applications of transcranial lasers and LEDs. Biochemical Pharmacology 2013; 86: 447-57. 17.Newmeyer DD, Ferguson-Miller S. Mitochondria: Releasing Power for Life and Unleashing the Machineries of Death. Cell 2003; 112: 481-90. 18.Hamblin MR, Demidova TN. Mechanisms of low level light therapy. 2006: 614001-. 19.Karu TI. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 2010; 62: 607-10. 20.Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI. Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome c oxidase under near IR radiation. Journal of Photochemistry and Photobiology B: Biology 2005; 81: 98-106. 21.Krutmann J, Schroeder P. Role of mitochondria in photoaging of human skin: the defective powerhouse model. J Investig Dermatol Symp Proc 2009; 14: 44-9. 22.Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004; 55: 373-99. 23.Devasagayam TP, Tilak JC, Boloor KK et al. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 2004; 52: 794-804. 24.Scharffetter-Kochanek K, Wlaschek M, Brenneisen P et al. UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biological chemistry 1997; 378: 1247-57. 25.Suzuki N, Mittler R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum 2006; 126: 45-51. 26.Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine 2001; 30: 1191-212. 27.Sarsour EH, Kumar MG, Chaudhuri L et al. Redox control of the cell cycle in health and disease. Antioxid Redox Signal 2009; 11: 2985-3011. 28.Laurent A, Nicco C, Chereau C et al. Controlling Tumor Growth by Modulating Endogenous Production of Reactive Oxygen Species. Cancer Research 2005; 65: 948-56. 29.Park IJ, Hwang JT, Kim YM et al. Differential modulation of AMPK signaling pathways by low or high levels of exogenous reactive oxygen species in colon cancer cells. Annals of the New York Academy of Sciences 2006; 1091: 102-9. 30.Lin CW, Yang LY, Shen SC, Chen YC. IGF-I plus E2 induces proliferation via activation of ROS-dependent ERKs and JNKs in human breast carcinoma cells. Journal of cellular physiology 2007; 212: 666-74. 31.Chen FH, Zhang LB, Qiang L et al. Reactive oxygen species-mitochondria pathway involved in LYG-202-induced apoptosis in human hepatocellular carcinoma HepG(2) cells. Cancer letters 2010; 296: 96-105. 32.Afanas'ev I. Reactive oxygen species signaling in cancer: comparison with aging. Aging and disease 2011; 2: 219-30. 33.Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 1999; 57: 231-45. 34.Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends in Biochemical Sciences 2000; 25: 502-8. 35.Cleveland JL, Kastan MB. Cancer: A radical approach to treatment. Nature 2000; 407: 309-11. 36.Drose S, Brandt U. Molecular Mechanisms of Superoxide Production by the Mitochondrial Respiratory Chain. In: Kadenbach B, ed. Mitochondrial Oxidative Phosphorylation: Springer New York 2012:145-69. 37.Birch-Machin MA. The role of mitochondria in ageing and carcinogenesis. Clinical and Experimental Dermatology 2006; 31: 548-52. 38.McKenzie M, Liolitsa D, Hanna M. Mitochondrial Disease: Mutations and Mechanisms. Neurochemical Research 2004; 29: 589-600. 39.Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 2005; 5: 89-108. 40.Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr 2005; 2: 38-44. 41.Smith RAJ, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Annals of the New York Academy of Sciences 2010; 1201: 96-103. 42.Schroeder P, Lademann J, Darvin ME et al. Infrared radiation-induced matrix metalloproteinase in human skin: implications for protection. J Invest Dermatol 2008; 128: 2491-7. 43.Cooper GM. The molecular composition of cells. 2000. 44.Wells J, Kao C, Jansen ED et al. Application of infrared light for in vivo neural stimulation. Journal of Biomedical Optics 2005; 10: 064003-. 45.Yao J, Liu B, Qin F. Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies. Biophys J 2009; 96: 3611-9. 46.Szigeti GP, Hegyi G, Szasz O. Hyperthermia versus Oncothermia: Cellular Effects in Cancer Therapy. Conference Papers in Medicine; 2013: Hindawi Publishing Corporation; 2013. 47.McLaughlin S. The Electrostatic Properties of Membranes. Annual Review of Biophysics and Biophysical Chemistry 1989; 18: 113-36. 48.Wells J, Kao C, Konrad P et al. Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve. Biophysical Journal 2007; 93: 2567-80. 49.Falk M, Ford T. Infrared spectrum and structure of liquid water. Canadian Journal of Chemistry 1966; 44: 1699-707. 50.Choy H, Rodriguez FF, Koester S et al. Investigation of taxol as a potential radiation sensitizer. Cancer 1993; 71: 3774-8. 51.Oberdanner CB, Kiesslich T, Krammer B, Plaetzer K. Glucose is required to maintain high ATP-levels for the energy-utilizing steps during PDT-induced apoptosis. Photochemistry and photobiology 2002; 76: 695-703. 52.Surface plasmons on gratings. Surface Plasmons on Smooth and Rough Surfaces and on Gratings: Springer Berlin Heidelberg 1988:91-116. 53.Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 2003; 424: 824-30. 54.Ghaemi HF, Thio T, Grupp DE et al. Surface plasmons enhance optical transmission through subwavelength holes. Physical Review B 1998; 58: 6779-82. 55.Powell CJ, Swan JB. Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium. Physical Review 1960; 118: 640-3. 56.Bethe HA. Theory of Diffraction by Small Holes. Physical Review 1944; 66: 163-82. 57.Ebbesen TW, Lezec HJ, Ghaemi HF et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998; 391: 667-9. 58.Crouse D, Keshavareddy P. Polarization independent enhanced optical transmission in one-dimensional gratings and device applications. Opt Express 2007; 15: 1415-27. 59.Yi-Ting W, Yi-Tsung C, Hung-Hsin C et al. Narrow Band Midinfrared Waveguide Thermal Emitters. Photonics Technology Letters, IEEE 2010; 22: 1159-61. 60.Seo JB, Im JG, Goo JM et al. Atypical pulmonary metastases: spectrum of radiologic findings. Radiographics 2001; 21: 403-17. 61.Eramo A, Haas TL, De Maria R. Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene 2010; 29: 4625-35. 62.Horn LPW, Johnson DH Harrison's Principles of Internal Medicine (18th ed.). McGraw-Hill 2012. 63.Collins LG, Haines C, Perkel R, Enck RE. Lung cancer: diagnosis and management. Am Fam Physician 2007; 75: 56-63. 64.Dubey S, Powell CA. Update in lung cancer 2008. Am J Respir Crit Care Med 2009; 179: 860-8. 65.Giard DJ, Aaronson SA, Todaro GJ et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 1973; 51: 1417-23. 66.Chang HY, Shih MH, Huang HC et al. Middle infrared radiation induces g(2)/m cell cycle arrest in a549 lung cancer cells. PloS one 2013; 8: e54117. 67.Lee CF, Liu CY, Hsieh RH, Wei YH. Oxidative stress-induced depolymerization of microtubules and alteration of mitochondrial mass in human cells. Ann N Y Acad Sci 2005; 1042: 246-54. 68.Medeiros LR, Rosa DD, da Rosa MI et al. Efficacy of Human Papillomavirus Vaccines: A Systematic Quantitative Review. International Journal of Gynecological Cancer 2009; 19: 1166-76 10.11/IGC.0b013e3181a3d100. 69.Walboomers JMM, Jacobs MV, Manos MM et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. The Journal of Pathology 1999; 189: 12-9. 70.Woodman CBJ, Collins SI, Young LS. The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 2007; 7: 11-22. 71.Brown CL. The immortal life of henrietta lacks. J Health Polit Policy Law 2012; 37: 1141-6. 72.Due, as-Gonzalez A, Cetina L et al. Emerging drugs for cervical cancer. Expert Opinion on Emerging Drugs 2012; 17: 203-18. 73.Snyder JP, Nettles JH, Cornett B et al. The binding conformation of Taxol in β-tubulin: A model based on electron crystallographic density. Proceedings of the National Academy of Sciences 2001; 98: 5312-6. 74.Varbiro G, Veres B, Gallyas Jr F, Sumegi B. Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radical Biology and Medicine 2001; 31: 548-58. 75.Ozkan L, Egeli U, Tunca B et al. Investigation of genotoxic effect of taxol plus radiation on mice bone marrow cells. Teratog Carcinog Mutagen 2002; 22: 1-11. 76.Li PF, Dietz R, von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J 1999; 18: 6027-36. 77.Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis 2007; 12: 913-22. 78.Weng WW, Xu YJ, Wan JM et al. [Molecular mechanism of radiosensitizing effect of paclitaxel]. Ai Zheng 2009; 28: 844-50. 79.Nichols RC, Sweetser MG, Mahmood SK et al. Radiation therapy and concomitant paclitaxel/carboplatin chemotherapy for muscle invasive transitional cell carcinoma of the bladder: A well-tolerated combination. International Journal of Cancer 2000; 90: 281-6. 80.Jaakkola M, Rantanen V, Grenman S et al. In vitro concurrent paclitaxel and radiation of four vulvar squamous cell carcinoma cell lines. Cancer 1996; 77: 1940-6. 81.Geard CR, Jones JM. Radiation and taxol effects on synchronized human cervical carcinoma cells. International Journal of Radiation Oncology*Biology*Physics 1994; 29: 565-9. 82.Choi SJ, Lee HK, Kim NH, Chung SY. Mycophenolic acid mediated mitochondrial membrane potential transition change lead to T lymphocyte apoptosis. J Korean Surg Soc 2011; 81: 235-41. 83.Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003; 3: 380-7. 84.Allison RR, Moghissi K. Photodynamic Therapy (PDT): PDT Mechanisms. Clin Endosc 2013; 46: 24-9. 85.Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy 2004; 1: 279-93. 86.Rosenkranz AA, Jans DA, Sobolev AS. Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency. Immunol Cell Biol 2000; 78: 452-64. 87.Anselmo AC, Mitragotri S. An Overview of Clinical and Commercial Impact of Drug Delivery Systems. J Control Release 2014. 88.Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer 2007; 120: 2527-37. 89.Reiners JJ, Jr., Caruso JA, Mathieu P et al. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell death and differentiation 2002; 9: 934-44. 90.Liang HL, Whelan HT, Eells JT et al. Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis. Neuroscience 2006; 139: 639-49. 91.Wong-Riley MT, Liang HL, Eells JT et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. The Journal of biological chemistry 2005; 280: 4761-71. 92.Ying R, Liang HL, Whelan HT et al. Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity. Brain research 2008; 1243: 167-73. 93.Zhang H, Wu S, Xing D. Inhibition of Abeta(25-35)-induced cell apoptosis by low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation. Cellular signalling 2012; 24: 224-32. 94.Zhang L, Xing D, Zhu D, Chen Q. Low-power laser irradiation inhibiting Abeta25-35-induced PC12 cell apoptosis via PKC activation. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2008; 22: 215-22. 95.Zeng H, Sun M, Zhou C et al. Hematoporphyrin Monomethyl Ether-Mediated Photodynamic Therapy Selectively Kills Sarcomas by Inducing Apoptosis. PloS one 2013; 8: e77727. 96.Choi EM, Lee YS. Paeoniflorin isolated from Paeonia lactiflora attenuates osteoblast cytotoxicity induced by antimycin A. Food & function 2013; 4: 1332-8. 97.Plaetzer K, Kiesslich T, Krammer B, Hammerl P. Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology 2002; 1: 172-7. 98.Tatsumi T, Shiraishi J, Keira N et al. Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovascular research 2003; 59: 428-40. 99.Liu L, Zhang Z, Xing D. Cell death via mitochondrial apoptotic pathway due to activation of Bax by lysosomal photodamage. Free Radical Biology and Medicine 2011; 51: 53-68. 100.Karu T, Pyatibrat L, Kalendo G. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. Journal of Photochemistry and Photobiology B: Biology 1995; 27: 219-23. 101.Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response 2009; 7: 358-83. 102.Chen AC, Arany PR, Huang YY et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PloS one 2011; 6: e22453. 103.Roberts WG, Shiau F-Y, Nelson JS et al. In Vitro Characterization of Monoaspartyl Chlorin e6 and Diaspartyl Chlorin e6 for Photodynamic Therapy. Journal of the National Cancer Institute 1988; 80: 330-6. 104.Herrmann JM, Riemer J. Oxidation and reduction of cysteines in the intermembrane space of mitochondria: multiple facets of redox control. Antioxid Redox Signal 2010; 13: 1323-6. 105.Socrates G. Infrared characteristic group frequencies : tables and charts. 2nd ed. ed. Chichester ;: Wiley 1994. 106.Yang W, Xiao X, Tan J, Cai Q. In situ evaluation of breast cancer cell growth with 3D ATR-FTIR spectroscopy. Vibrational Spectroscopy 2009; 49: 64-7. 107.Nicotera P, Leist M, Fava E et al. Energy requirement for caspase activation and neuronal cell death. Brain pathology (Zurich, Switzerland) 2000; 10: 276-82. 108.Abraham EH, Woo VH, Harlin-Jones C et al. Application and possible mechanisms of combining LLLT (low level laser therapy), infrared hyperthermia and ionizing radiation in the treatment of cancer. SPIE BiOS; 2014: International Society for Optics and Photonics; 2014. p. 893202--17. 109.Chow R. Phototherapy and the peripheral nervous system. Photomed Laser Surg 2011; 29: 591-2. 110.Zhang Y-L, Ouyang L, Wang Y. Absorption of human skin and its detecting platform in the process of laser cosmetology. 2000: 249-52. 111.Darvin ME, Gersonde I, Albrecht H et al. In vivo Raman spectroscopic analysis of the influence of IR radiation on the carotenoid antioxidant substances beta-carotene and lycopene in the human skin. Formation of free radicals. Laser Physics Letters 2007; 4: 318-21. 112.Darvin ME, Gersonde I, Albrecht H et al. Non-invasive in vivo detection of the carotenoid antioxidant substance lycopene in the human skin using the resonance Raman spectroscopy. Laser Physics Letters 2006; 3: 460-3. 113.Chung H, Dai T, Sharma S et al. The Nuts and Bolts of Low-level Laser (Light) Therapy. Annals of Biomedical Engineering 2012; 40: 516-33. 114.Hashmi JT, Huang YY, Osmani BZ et al. Role of low-level laser therapy in neurorehabilitation. PM R 2010; 2: S292-305. 115.Dittami GM, Rajguru SM, Lasher RA et al. Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes. J Physiol 2011; 589: 1295-306. 116.Deisseroth K. Controlling the brain with light. Scientific American 2010; 303: 48-55. 117.Gradinaru V, Thompson KR, Zhang F et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience 2007; 27: 14231-8. 118.Deisseroth K. Optogenetics. Nat Meth 2011; 8: 26-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56629 | - |
| dc.description.abstract | 近年研究發現,紅外光可調控生物體的生理機能,活絡粒線體內的電子傳遞鏈,影響蛋白質含量和代謝,進而影響生物體成長形態。本論文主要是設計結合紅外光發射器之細胞培養箱,並探討癌症治療的過程中,癌細胞受不同波段紅外光照射和調控,其抑癌的效果與機制。
本文的第一個主題,是探討 3~5 um窄頻中紅外光影響肺癌細胞 A549的療效。利用三層結構 (金/二氧化矽/金)的波導熱輻射發射器(Waveguide thermal emitter),其上下兩層金之間的二氧化矽激發共振腔膜態產生窄頻紅外光源,可抑制肺癌細胞 A549生長,造成癌細胞粒線體膜電位的異常。 本文的第二個主題,是探討 3~5 um窄頻中紅外光影響 Paclitaxel對子宮頸癌細胞HeLa的療效。利用波導熱輻射發射器產生窄頻紅外光源照射子宮頸癌細胞 HeLa,可提升 Paclitaxel的治療效果,破壞粒線體膜電位,刺激下游的凋亡訊息路徑,造成更多子宮頸癌細胞 HeLa死亡。 本文的第三個主題,是探討 810 nm近紅外光雷射結合光動力療法對骨癌細胞 MG-63的療效。研究發現 810 nm近紅外光雷射可影響細胞的電子傳遞鏈和產生大量ATP,造成癌細胞吸收更多標靶於溶酶體的 Mono-L-aspartyl chlorin(e6) (NPe6),接著由紅光激發光敏劑引起光動力效應,產生大量活性氧毒殺癌細胞。 本文的研究成果可讓我們了解,利用紅外光適當調控生物體的生理機能,結合癌症治療,可以加強抑制惡性腫瘤細胞。未來也可應用於臨床和家庭醫療,透過非侵入性、低副作用的特性,可減少傷害正常人體組織,達成更好的功效。 | zh_TW |
| dc.description.abstract | Recent studies found that infrared radiation (IR) can regulate physiology of organisms, stimulate mitochondrial electron transport chain, and affect expression of the genes, thereby regulating the morphology of cell growth. The goal of this thesis is to design the cell incubator equipped with IR emitter, and investigate the effectiveness and mechanisms of different wavelengths of IR on the cancer therapy.
In the first topic of this thesis, it was clarified that the effect of mid-infrared radiation (MIR) with the peak wavelengths of 3~5 um range on the growth of lung cancer cell A549. The tri-layers Au/SiO2/Au waveguide thermal emitter (WTE) was used as the light source of narrow band IR. IR was originated from the resonance of cavity mode generated in the SiO2 layer between two Au films. The results showed that IR can inhibit the growth of cancer cell A549, leading to the collapse of mitochondrial membrane potential. In the second topic of this thesis, it was investigated that the effects of HeLa cells treated with Paclitaxel combined with 3~5 um MIR. Narrow band IR from WTE can promote the effectiveness of Paclitaxel through the collapse of mitochondrial membrane potential. In the third topic of this thesis, it was investigated that the effects of combination treatment of 810 nm near infrared radiation (NIR) laser and photodynamic therapy (PDT) in osteosarcoma cancer cell MG-63. The data showed that 810 nm NIR laser can regulate the electron transport chain and generate a large amount of ATP to enhance the uptake of lysosome-localized photosensitizer mono-L-aspartyl chlorin (e6) (NPe6). Therefore, overproduction of reactive oxygen species was activated through red light-induced PDT effects. The results of this thesis imply that the combination of cancer therapy and IR-regulated physiological activity can enhance the therapeutic effects on cancer cells. In future, IR can be applied to clinical and home health care to achieve therapeutic purposes without damaging normal tissue based on the characteristics of non-invasive and low side effects. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:38:46Z (GMT). No. of bitstreams: 1 ntu-103-F95921105-1.pdf: 3404434 bytes, checksum: e830e8a9085625f1f89ef481339d86ce (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝...................................................I
中文摘要..............................................III Abstract..............................................IV Contents..............................................VI List of abbreviations.................................XI Figure legends.......................................XII Chapter 1 Introduction.................................1 1.1 The mechanism of infrared in photobiology..........1 1.1.1 IR and mitochondria..............................5 1.1.2 IR and ROS.......................................7 1.1.3 IR and water molecule............................11 1.2 The objectives of this thesis......................13 1.3 The framework of this thesis.......................15 Chapter 2 The infrared light source....................18 2.1 The fundamentals of waveguide thermal emitter......18 2.1.1 Surface plasmons on smooth surfaces..............18 2.1.2 Surface plasmons on the metal surface perforated with hole arrays............................................23 2.2 The extraordinary light transmission and waveguide mode...................................................26 2.3 Fabrication and measurement of infrared emitter....28 2.4 Incubator for cell illuminated by IR...............36 2.5 The light source used in combination treatment of NIR and PDT................................................37 Chapter 3 The effect of narrow band 3~5 um MIR on the growth of lung cancer cell A549 for 48 hours...........38 3.1 Motivation.........................................38 3.2 Material and methods...............................42 3.2.1 Measurement of cell number and diameter..........42 3.2.2 Cell mitochondrial membrane potential analysis...44 3.3 Results and discussion.............................45 3.3.1 MIR inhibits the growth of A549 cells............45 3.3.2 MIR increases collapse of mitochondrial membrane potential..............................................48 Chapter 4 The effect of narrow band 3~5 um MIR in enhancing the antitumor activity of paclitaxel...................51 4.1 Motivation.........................................51 4.2 Material and methods...............................55 4.2.1 Cell culture.....................................55 4.2.2 Measurement of cell viability....................55 4.2.3 Measurements by Annexin V-FITC/PI (Propidium iodide) staining...............................................56 4.2.4 Cell mitochondrial membrane potential analysis...56 4.2.5 Oxidative stress analysis........................57 4.3 Results............................................58 4.3.1 Dosages of paclitaxel for HeLa cells.............58 4.3.2 MIR enhanced antitumor activity of paclitaxel....60 4.3.3 MIR increases apoptosis in HeLa cells treated with paclitaxel.............................................62 4.3.4 MIR-induced collapse of mitochondrial membrane potential of HeLa cells treated with paclitaxel........64 4.3.5 MIR increases ROS generation in HeLa cells treated with paclitaxel........................................66 4.4 Discussion.........................................68 Chapter 5 The effect of 810 nm NIR laser potentiates NPe6-mediated PDT...........................................71 5.1 Motivation.........................................71 5.2 Material and methods...............................74 5.2.1 Cell culture.....................................74 5.2.2 Cell viability and PDT treatment.................74 5.2.3 Cellular uptake of NPe6..........................77 5.2.4 Measurement of ROS generation induced by NIR combined with PDT...............................................77 5.2.5 Cell Localization of NPe6 via Confocal Microscopy.78 5.2.6 ATP activity assay................................79 5.2.7 Pretreatment with mitochondrial respiratory chain inhibitor antimycin A...................................79 5.2.8 Statistical Analysis..............................80 5.3 Results.............................................80 5.3.1 NIR-LLLT enhanced PDT effectiveness...............80 5.3.2 Cellular uptake of NPe6 after NIR-LLLT............82 5.3.3 NIR-LLLT increases PDT-induced ROS generation.....82 5.3.4 Intracellular localization of NPe6 in MG-63 cells.85 5.3.5 Activation of ATP production by NIR-LLLT..........85 5.3.6 NIR-LLLT potentiation of NPe6 PDT cytotoxicity is abrogated by antimycin A, an inhibitor of ATP synthesis.88 5.4 Discussion..........................................90 Chapter 6 Conclusion and perspectives...................93 6.1 Conclusion..........................................93 6.2 Perspectives........................................98 References.............................................100 | |
| dc.language.iso | en | |
| dc.subject | 波導熱輻射紅外光發射器 | zh_TW |
| dc.subject | MG-63骨肉癌細胞 | zh_TW |
| dc.subject | HeLa 子宮頸癌細胞 | zh_TW |
| dc.subject | A549 肺癌細胞 | zh_TW |
| dc.subject | 低能量光療法 | zh_TW |
| dc.subject | 光動力療法 | zh_TW |
| dc.subject | Osteosarcoma cell lines MG-63 | en |
| dc.subject | Low-level light therapy | en |
| dc.subject | Waveguide thermal infrared emitter | en |
| dc.subject | Cervical cancer cell HeLa | en |
| dc.subject | Lunge cancer cell A549 | en |
| dc.subject | Photodynamic therapy | en |
| dc.title | 窄頻紅外光發射器之設計與其在癌症治療之研究 | zh_TW |
| dc.title | The Design of Narrow Band Infrared Emitter and Its Applications in Cancer Treatments | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 莊曜宇(Eric Y. Chuang),阮雪芬(Hsueh-Fen Juan),謝旭亮(Hsu-Liang Hsieh),許博欽(Bor-Ching Sheu),蔡明瑋(Ming-Wei Tsai) | |
| dc.subject.keyword | 光動力療法,低能量光療法,波導熱輻射紅外光發射器,HeLa 子宮頸癌細胞,A549 肺癌細胞,MG-63骨肉癌細胞, | zh_TW |
| dc.subject.keyword | Photodynamic therapy,Low-level light therapy,Waveguide thermal infrared emitter,Cervical cancer cell HeLa,Lunge cancer cell A549,Osteosarcoma cell lines MG-63, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
