Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56625
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣
dc.contributor.authorGong-Sheng Chengen
dc.contributor.author鄭功聖zh_TW
dc.date.accessioned2021-06-16T05:38:32Z-
dc.date.available2019-08-17
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-12
dc.identifier.citation[1] IDC’s Digital Universe, “The digital universe in 2020 : big data, bigger digital shadows, and biggest growth in the far east.”, Sponsored by EMC, December 2012
[2] International Technology Roadmap for Semiconductors, “Executive Summary,” 2011.
[3] Intel, “Moving data with silicon and optical,”
http://www.intel.com/content/www/us/en/research/intel-labs-silicon-photonics-research.html
[4] S.O. Kasap, Optoelectronics and Photonics : Principles and Practices, Prentice Hall, 2001, pp. 223.
[5] Intel and John Bowers, “A hybrid silicon laser,” 2006
http://engineering.ucsb.edu/bowers/hybrid_laser_white_paper.pdf
[6] W. Snodgrass, B.R. Wu, K.Y. Cheng, and M. Feng, “Type-II GaAsSb/InP DHBTs with record fT = 670 GHz and simultaneous fT, fMAX > 400 GHz,” in IEEE International Electron Devices Meeting (IEDM), 2007, pp. 663-666.
[7] N. Holonyak, Jr. and S.F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Applied Physics Letters, vol. 1, pp. 82-83, December 1962.
[8] M. Feng, N. Holonyak, Jr., and W. Hafez, “Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” Applied Physics Letters, vol. 84, pp. 151-153, January 2004.
[9] M. Feng, N. Holonyak, Jr., and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Applied Physics Letters, vol. 84, pp. 1952-1954, March 2004.
[10] F.Tan, R. Bambery, M. Feng and N. Honoyak, Jr. “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Applied Physics Letters, vol. 99, 061105, July 2011.
[11] W. Shockley, M. Sparks., and G.K. Teal, “p-n junctions transistors”, Physical Review, vol. 83, pp. 151, July 1951.
[12] John N. Shive., “The properties of germanium phototransistors”, Journal of the Optical Society of America, vol. 43, pp. 239, April 1953.
[13] M. Bass, J. Enoch, E. Stryland and W. Wolfe, Handbook of optics vol.IV . Optical Society of America,
[14] David Wood, Optoelectronic semiconductor devices, Prentice Hall,1994, pp. 277-278.
[15] David Wood, Optoelectronic semiconductor devices, Prentice Hall,1994, pp. 282.
[16] D. Decoster and J. Harar, Optoelectronic sensors, Wiley, 2009, pp. 124-125
[17] N. Holonyak and J. M. Dallesasse, “AlGaAs native oxide,” U.S. Patent 5 262 360, Nov. 16, 1993
[18] http://www.thorlabs.hk/thorcat/2700/FDS1010-SpecSheet.pdf
[19] L. V. Keldysh, “Behaviour of non-Metallic crystals in strong electric fields,” Soviet. Physics-JETP, vol. 6, pp. 763-770, April 1958.
[20] L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Soviet. Physics-JETP, vol. 20, pp. 1307-1314 May 1965.
[21] W. Franz, “Einflus eines elektrischen Feldes auf eine optische Absorptionskante,” Zeitschrift Naturforschung Teil A, vol. 13, p. 484, 1958.
[22] K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Physical Review Letters, vol. 130, pp. 2204-2206, June 1963.
[23] David Wood, Optoelectronic semiconductor devices, Prentice Hall,1994, pp. 279-280.
[24] R. G. Hunsperger, Integrated Optics: Theory and Technology
[25] W. Liu, Ed., Handbook of III-V heterojunction bipolar transistors. New York: Wiley-Interscience, 1998, pp. 152-160
[26] W. Liu, S.K. Fan, Tae S. Kim, Edward A. Beam III, and David B. Davito, “Current transport mechanism in GaInP/GaAs heterojunction bipolar transistors,” IEEE Transactions on Electron Devices, vol. 40, pp. 1378 -1383, August 1993.
[27] S. M. Frimel and K. P. Roenker, “Gummel-poon model of npn heterojunction bipolar phototransistors,” Applied Physics Letters, vol. 82, pp 3581, June 1997.
[28] R. Sridhara, S. M. Frimel, K. P. Roenker, N. Pan and J. Elliott, “Performance enhancement of GaInP/GaAs heterojunction bipolar phototransistors using dc base bias,” Journal of Lightwave Technology, vol. 16, No. 6, June 1998.
[29] H. W. Then, M. Feng, N. Holonyak, Jr., and C.H. Wu, “Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well n-p-n heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping,” Applied Physics Letters, vol. 91, pp. 033505, July 2007.
[30] S. Bansropun, R. C. Woods, and J. S. Roberts, “Evidence of optical gain improvement in AlGaAs/GaAs Heterojunction Phototransistors using an emitter shoulder structure,” IEEE Transiscations on Electron Devices, vol. 48, No 7, pp. 1333-1339, July 2001
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56625-
dc.description.abstract發光電晶體(Light-Emitting Transistor, LET)是一種特殊的三端(Three port)電晶體,同時具有電訊號輸入、電訊號輸出與光訊號輸出的半導體元件,與傳統電晶體同樣具有電訊號傳輸的功能,同時在基極端的量子井可產生光訊號的輸出,使得發光電晶體成為一種新型的雙輸出電晶體元件,而發光電晶體其磊晶結構與傳統的異質接面雙極性電晶體(Heterojunction bipolar tranisitor)相似,基極、集極與次級極形成一p-i-n二極體可接收光訊號,故我們可以將發光電晶體當作是一個光接收器來操作,即為光電晶體(Heterojunction phototransisitor),實現積體化光接收器(Receiver)的構想。發光電晶體集合了傳輸器(Transceiver)與接收器(Receiver)的特性,使之成為下一代光電積體整合電路(OEIC, OptoElectronic Integrated Circuits)的重要發展元件。
在本篇論文中,我們利用發光電晶體的光輸出特性與光接收特性,製作出單晶積體整合發光電晶體與側面耦合式光電晶體,一端作為光源,一端視為光接收器,量測其光/電訊號的特性。我們發現將光電晶體的集基極區域當作一個p-i-n diode時,其響應度只有0.1~0.23A/W之間,若我們將他操作至電晶體的模式下,其響應度可增加至1.3 A/W,若我們將利用三端操作的方式操作光電晶體,可以發現電流增益(β=IC/IB)可以得到改善,其增益可從1.35上升至12.3。
本篇論文中發光電晶體與光電晶體的整合積體化,尚有許多可以改善之空間,首先是兩元件之間的耦合,可以藉由波導之製作來改善,並且發光電晶體更可以進一步的製作成電晶體雷射(Transistor laser, TL),增加光強度輸出與準直性;在光電晶體的部分其收光面積以及材料對於光子吸收的極限都是可以藉由材料、磊晶與光罩設計進行改善。
zh_TW
dc.description.abstractThe heterojunction bipolar transistor (HBT) can be modified and operated as a three-port light-emitting device (an electrical input, an electrical output, and a third port optical output) by incorporating one or more quantum wells in the base region, thus becoming a heterojunction bipolar light-emitting transistor (LET). The epitaxy structure of the LET is very similar to the HBT so that we can operate the LET like a heterojunction phototransistor (HPT). The base, collector and sub-collector layers of a LET are designed to implement the p-i-n photodiode. The LET have the transiever and receiver characteristics, which becomes one of the best candidate of next generation OptoElectric Integrated Circuits (OEIC).
In this thesis, we have designd and fabricated the monolithic intergrated light-emitting transistor and heterojunction phototransistor utilizing the optical output and receiver charactrics of the LET. Typcial p-i-n mode current-voltage characteristics have been measured for an HPT with the optical input from the LET. The responsivity of p-i-n photodiode is about 0.1~0.23 A/W, but when operating the HPT at transistor mode the responsivity can be improved to 1.3 A/W. The HPT also can be measured with three-terminal configuration. We found that the current gain of HPT with three-terminal configuration has large improvement with small base current input (1 μA) from 1.35 to 12.3 due to the light absorption.
We can still improve the integration of the LET and HPT to enhance the performance. Firstly, we can fabricate wave guide between two devices to increase the coupling coefficient of two devices. Secondly, the LET can be substituted by the transistor laser (TL) due to the larger optical output. Finally, the area of optical window and the absorption litmit can be improved by the epitaxy of material and layout design.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:38:32Z (GMT). No. of bitstreams: 1
ntu-103-R00941118-1.pdf: 5697760 bytes, checksum: a7f7383a1969bd7862607fe6654f1812 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 xi
第1章 緒論 1
1.1 背景介紹與目的 1
1.2 論文概述 5
第2章 發光電晶體與光電晶體之基本工作原理 6
2.1 發光電晶體磊晶層介紹 6
2.2 發光電晶體之操作原理 8
2.3 光電晶體基本工作原理 11
2.3.1 簡介 11
2.3.2 光偵測器之吸收機制 11
2.3.3 光電晶體之操作特性 12
2.3.4 光電晶體之響應度(Responsivity)與光學增益(Optical gain) 13
第3章 積體整合發光電晶體與光電晶體之製作與電特性分析 17
3.1 積體整合發光電晶體與光電晶體之製作流程 17
3.2 直流訊號量測儀器介紹與架設 27
3.3 發光電晶體與光電晶體之電輸出特性分析 31
3.3.1 元件佈局介紹 31
3.3.2 電晶體之電輸出特性比較 31
3.3.3 發光電晶體之光輸出特性分析 35
第4章 光電晶體於光注入之光/電特性分析 42
4.1 光電晶體之BC二極體於逆偏下分析 42
4.2 光電晶體之Gummel曲線特性分析 47
4.3 基極浮接之光電晶體光特性分析 52
4.4 三端操作之光電晶體特性分析 58
第5章 論文總結與未來展望 63
5.1 論文回顧 63
5.2 未來展望 64
參考文獻 65
dc.language.isozh-TW
dc.subject發光電晶體zh_TW
dc.subject光電積體整合zh_TW
dc.subject光電晶體zh_TW
dc.subject光響應度zh_TW
dc.subjectOptoElectric Integrated Circuits (OEIC)en
dc.subjectlight-emitting transistoren
dc.subjectheterojunction phototransistoren
dc.subjectresponsivityen
dc.title光電晶體之研製與特性分析應用在光電積體電路zh_TW
dc.titleFabrication and Characterization of Heterojunction Bipolar Phototransistors for Opto-electrical Integrated Circuitsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林浩雄,林恭如,黃建璋,張書維
dc.subject.keyword光電積體整合,發光電晶體,光電晶體,光響應度,zh_TW
dc.subject.keywordOptoElectric Integrated Circuits (OEIC),light-emitting transistor,heterojunction phototransistor,responsivity,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2014-08-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved