Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56593
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章
dc.contributor.authorYing-Ray Luen
dc.contributor.author呂英睿zh_TW
dc.date.accessioned2021-06-16T05:36:41Z-
dc.date.available2015-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-12
dc.identifier.citation1. Akhtar, M. K., Corzo, G. A., Van Andel, S. J., & Jonoski, A. (2009). River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrology and Earth System Sciences, 13(9), 1607-1618.
2. Bao, H. J., Zhao, L. N., He, Y., Li, Z. J., Wetterhall, F., Cloke, H. L., ... & Manful, D. (2011). Coupling ensemble weather predictions based on TIGGE database with Grid-Xinanjiang model for flood forecast. Advances in Geosciences (ADGEO), 29, 61-67.
3. Cembrano, G., Quevedo, J., Salamero, M., Puig, V., Figueras, J., & Martı, J. (2004). Optimal control of urban drainage systems. A case study. Control Engineering Practice, 12(1), 1-9.
4. Chang, F. J., & Chen, Y. C. (2001). A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. Journal of hydrology, 245(1), 153-164.
5. Chang, F. J., & Chang, Y. T. (2006). Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources, 29(1), 1-10.
6. Chang, L. C., & Chang, F. J. (2001). Intelligent control for modelling of real‐time reservoir operation. Hydrological Processes, 15(9), 1621-1634.
7. Chang, F. J., Chang, K. Y., & Chang, L. C. (2008). Counterpropagation fuzzy-neural network for city flood control system. Journal of hydrology, 358(1), 24-34.
8. Chang, F. J., Chen, P. A., Lu, Y. R., Huang, E., & Chang, K. Y. (2014). Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. Journal of Hydrology, 517, 836-846.
9. Chang, F. J., Chen, P. A., Liu, C. W., Liao, V. H. C., & Liao, C. M. (2013). Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling. Journal of Hydrology, 499, 265-274.
10. Chiang, Y. M., Chang, L. C., Tsai, M. J., Wang, Y. F., & Chang, F. J. (2011). Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks. Hydrology and Earth System Sciences, 15(1), 185-196.
11. Chiang, Y. M., Chang, L. C., & Chang, F. J. (2004). Comparison of static-feedforward and dynamic-feedback neural networks for rainfall–runoff modeling. Journal of Hydrology, 290(3), 297-311.
12. Chiang, Y. M., Chang, L. C., Tsai, M. J., Wang, Y. F., & Chang, F. J. (2010). Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites. Hydrology and Earth System Sciences, 14(7), 1309-1319.
13. Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211.
14. Kwok, T. Y., & Yeung, D. Y. (1997). Constructive algorithms for structure learning in feedforward neural networks for regression problems. Neural Networks, IEEE Transactions on, 8(3), 630-645.
15. Lin, T., Horne, B. G., Tino, P., & Giles, C. L. (1996). Learning long-term dependencies in NARX recurrent neural networks. Neural Networks, IEEE Transactions on, 7(6), 1329-1338.
16. Maeda, Y., Oohashi, H., & Saitou, T. (2006). Development of Operation Navigation System. Proceedings of the Water Environment Federation, 2006(6), 5935-5948.
17. McClelland, J. L., Rumelhart, D. E., & PDP Research Group. (1986). Parallel distributed processing. Explorations in the microstructure of cognition, 2.
18. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
19. Hsu, N. S., Huang, C. L., & Wei, C. C. (2013). Intelligent real-time operation of a pumping station for an urban drainage system. Journal of Hydrology, 489, 85-97.
20. Guyer, J. P. (2012). An Introduction to Water Supply Systems.
21. Pearson, K. (1896). Mathematical Contributions to the Theory of Evolution.--On a Form of Spurious Correlation Which May Arise When Indices Are Used in the Measurement of Organs. Proceedings of the royal society of london, 60(359-367), 489-498.
22. PUB, Singapore’s National Water Agency. (2013). Code of Practice on Surface Water Drainage, sixth ed. Singapore.
23. Siegelmann, H. T., Horne, B. G., & Giles, C. L. (1997). Computational capabilities of recurrent NARX neural networks. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 27(2), 208-215.
24. Sugita, T., & Kishi, T. (2001). Development of Coolant-free Bearing for Large Capacity Pump and its Application to Pumping Stations. Proceedings of the Water Environment Federation, 2001(16), 724-724.
25. Tamoto, N., Yoshimoto, K., Yoshida, T., & Sakakibara, T. (2008). Forecast-based operation method in minimizing flood damage in urban area, 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
26. Tang, Y., Zheng, G., & Zhang, S. (2014). Optimal control approaches of pumping stations to achieve energy efficiency and load shifting. International Journal of Electrical Power & Energy Systems, 55, 572-580.
27. 江俊生,2001,都會區降雨-逕流模式之研究及其應用於抽水站水位之即時預報,國立臺灣大學農業工程學研究所碩士論文。
28. 簡錤彪,2003,臺北市防洪抽水站現況評估與聯合運轉可行性之探討,國立臺灣海洋大學河海工程學研究所碩士論文。
29. 張慶五,2004,基於LonWorks網路控制技術的遠端、分散式泵站自動化監控系統,中國農村水利水電2:51。
30. 林旭信,2005,都市雨水下水道系統最佳化操作模擬,國立臺灣大學土木工程學研究所博士論文。
31. 邱建堯,2006,結合GA與CG優選最佳倒傳遞類神經網路應用在雨水下水道水位預報,國立臺灣大學生物環境系統工程學研究所碩士論文。
32. 李翁碩,2007,抽水站水位預測及系統操作之研究,國立臺灣大學生物環境系統工程學研究所碩士論文。
33. 張凱堯,2009,人工智慧於都市防洪排水系統控制之研究,國立臺灣大學生物環境系統工程學研究所博士論文。
34. 何宜樺,2009,建構集水區多時刻降雨-逕流機制與類神經網路洪水預報模式,國立臺灣大學生物環境系統工程學研究所碩士論文。
35. 黃建霖,2009,人工智慧應用於都市排水系統抽水站水位預測與最佳即時操作之研究,國立臺灣大學土木工程學研究所碩士論文。
36. 黃建基,2011,防洪抽水站抽水機組最佳化組合之研究,國立臺灣海洋大學商船學研究所碩士論文。
37. 徐年盛、黃建霖、魏志強,2012,智慧型都市排水抽水站即時操作系統之研發,農業工程學報,第五十八卷,第三期,第64-79頁。
38. 經濟部水利署,2008,防洪抽水站智慧型防汛操作系統之研究(1/2)。
39. 經濟部水利署,2009,防洪抽水站智慧型防汛操作系統之研究(2/2)。
40. 張斐章、張麗秋,2010,類神經網路導論─原理與應用,滄海書局。
41. 臺北市政府工務局水利工程處,2011,臺北市淹水潛勢圖製作及淹水預報系統建置工作。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56593-
dc.description.abstract高度開發城市因面臨都市化與氣候變遷導致洪峰流量快速上升之影響,使得都市防洪成為其重要議題。因此,為減輕未來洪水帶來損失,建立一有效率且準確之模式以預測洪汛時期市區抽水站之內外水位與指引適當抽水機操作有其迫切性與重要性。近年來,人工智慧技術運用於處理高度複雜之非線性系統有出色的處理能力,本研究運用該技術於即時水位預報等模式上。本研究選定臺北市玉成抽水站為研究對象,研究目標為建置即時水位預報和抽水機組操作策略兩種模式。
  本研究首先蒐集區域內水文計量站之歷史紀錄,通過相關性及歷程分析搜尋降雨逕流之稽延關係,並運用Gamma Test由多種雨量資訊篩選影響水位之重要因子,進而決定模式輸入因子。模式建置部分,使用一種靜態類神經網路(倒傳遞類神經網路─BPNN),二種動態類神經網路(隱藏層回饋式類神經網路─Elman NN, 非線性自回歸與外部輸入類神經網路─NARX)建立多時刻內水位預報模式;外水位預報模式則以三階自迴歸模型(AR3)建立,並比較評估水位預報模式之準確度與穩定性。本研究第二部分將著重於抽水站抽水機組操作策略,蒐集其操作之歷史紀錄,包含抽水機組、重力閘門操作紀錄,並配合水位預報模式之輸出水位值進行相關性及歷程分析,探討影響抽水機組操作之機制。最後,調適性網路模糊推論系統(ANFIS)負責整合水位預報模型建立多時刻抽水機組操作策略模式。
  結果顯示,動態類神經網路NARX訓練之內水位預報模式表現優於另外兩種網路;AR3模式能於1小時內準確推估外水位;另ANFIS所整合之抽水機組操作模式能精確且穩定模擬歷史人為操作歷程。本研究所提出之模式與方案,在洪汛時期可提供各抽水站中操作人員與決策者適當且即時之抽水機組操作策略,進而減輕洪災以達成都市防洪之目的。
zh_TW
dc.description.abstractUrban flood control is a crucial task in developed cities, which faces a great challenge of fast rising peak flows resulting from urbanization and climate change. Therefore, it is imperative to construct an efficient and accurate model to forecast the water levels of rivers in urban areas during flood periods. Artificial intelligence (AI) techniques possess an outstanding ability to handle highly non-linear complex systems and are implemented to make real-time water level forecasts in this study. The Yu-Cheng pumping station located in Taipei City, Taiwan, is selected as the study area. The purpose of this study is to construct water-level forecasting models and a real-time operating strategy of pumps.
  The first part of the study is dedicated to water level forecasting. Hydrological data were collected and fully explored by statistical techniques to identify the time span of rainfall affecting the rise of the water level in the floodwater storage pond (FSP) at the pumping station. Effective factors (rainfall stations) that significantly affect the FSP water level are extracted by the Gamma test (GT). For model construction, one static artificial neural network (ANN) (backpropagation neural network-BPNN) and two dynamic ANNs (Elman neural network - Elman NN; nonlinear autoregressive network with exogenous inputs - NARX network) are used to construct multi-step-ahead FSP water level forecasting models. A third-order autoregressive model (AR3) is used to construct multi-step-ahead river water level forecasting models.
  The second part of this study is dedicated to operating strategy. Historical operating records of pumps at the pumping station were collected. Effective factors that affect the pumping operation are explored through the correlation analysis between the forecasted FSP and river water levels and historical hydrographs and operating records. The adaptive network-based fuzzy inference system (ANFIS) is used to construct multi-step-ahead operation strategy models in consideration of water level forecasting models.
  The results demonstrate that the dynamic NARX network is superior to the two other comparative ANN models in making FSP water level forecasting; the AR3 model can accurately make river water level forecasting; and the ANFIS can suggest an operating strategy that suitably and reliably simulates historical pumping operations. The proposed methodology can provide managers and operators of pumping stations with a guideline for making suitable real-time pumping operation in response to drastic water level variations during flood periods, which is beneficial to urban flood control management.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:36:41Z (GMT). No. of bitstreams: 1
ntu-103-R01622024-1.pdf: 4486135 bytes, checksum: dc4c3a474418af22f6162b2af49de030 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents謝誌 I
摘要 IV
Abstract VI
目錄 IX
圖目錄 XII
表目錄 XV
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 6
2.1 抽水站水位預測與操作規劃 6
2.1.1 國內研究論文 6
2.1.2 國外研究論文 8
2.2 類神經網路應用於抽水站系統 14
第三章 理論概述 15
3.1 相關性分析 15
3.2 還原內水位 17
3.2.1 額定抽水量推估法 17
3.2.2 機組性能曲線推估法 20
3.3 Gamma Test 22
3.4 類神經網路 24
3.4.1 倒傳遞類神經網路(BPNN) 26
3.4.2 隱藏層回饋式類神經網路(Elman NN) 31
3.4.3 非線性自回歸與外部輸入類神經網路(NARX) 33
3.4.4 調適性網路模糊推論系統(ANFIS) 35
3.5 評估指標 41
3.5.1 均方根誤差(RMSE) 41
3.5.2 相關係數(CC) 41
3.5.3 效率係數(CE) 42
3.5.4 尖峰水位誤差(EWLp) 42
3.5.5 尖峰水位到達時刻誤差(ETp) 43
3.5.6 平均絕對誤差(MAE) 43
第四章 研究區域之資料蒐集與概況分析 44
4.1 研究區域介紹 44
4.2 研究標的抽水站之規劃與操作現況 48
4.3 資料蒐集與前處理 53
4.3.1 還原內水位歷線方法評估 58
第五章 智慧型抽水站內外水位預測模式 61
5.1 相關性與歷程分析概論 61
5.1.1 水位與雨量相關性分析 61
5.1.2 水位與雨量歷程分析 68
5.1.3 水位自相關性分析 70
5.2 篩選影響因子概論 71
5.3 建置水位預報模式 73
5.3.1 抽水站之多時刻內水位預報模式 73
5.3.2 抽水站之多時刻外水位預報模式 83
第六章 智慧型抽水站操作策略整合模式 87
6.1 相關性與歷程分析概論 87
6.1.1 機組操作與重力閘門歷程分析 88
6.1.2 機組操作與水位相關性分析 91
6.1.3 機組操作與水位差相關性分析 93
6.1.4 機組操作紀錄自相關性分析 95
6.2 篩選影響因子概論 96
6.3 整合操作策略模式 97
6.3.1 抽水站之多時刻機組操作模式 97
第七章 結論與建議 114
7.1 抽水站水位預報 114
7.2 抽水站操作 115
7.3 研究建議 116
第八章 參考文獻 118
dc.language.isozh-TW
dc.subject類神經網路zh_TW
dc.subject自迴歸模型(AR)zh_TW
dc.subject抽水站操作策略zh_TW
dc.subject都市防洪zh_TW
dc.subject水位預報zh_TW
dc.subject防洪抽水站zh_TW
dc.subject人工智慧(AI)zh_TW
dc.subjectGamma Testzh_TW
dc.subjectPumping stationen
dc.subjectFlood controlen
dc.subjectPumping operationen
dc.subjectOperating strategyen
dc.subjectWater level forecastingen
dc.subjectArtificial intelligence (AI)en
dc.subjectAutoregressive model (AR)en
dc.subjectArtificial neural network (ANN)en
dc.subjectGamma testen
dc.title智慧型抽水站排水系統水位預報及操作策略整合模式zh_TW
dc.titleIntelligent Urban Flood Control System for Pumping Stations: Real-time Water Level Forecasting Model and Operating Strategyen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃文政,曾鈞敏,張凱堯
dc.subject.keyword都市防洪,防洪抽水站,Gamma Test,類神經網路,自迴歸模型(AR),人工智慧(AI),水位預報,抽水站操作策略,zh_TW
dc.subject.keywordFlood control,Pumping station,Gamma test,Artificial neural network (ANN),Autoregressive model (AR),Artificial intelligence (AI),Water level forecasting,Operating strategy,Pumping operation,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2014-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved