Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56590
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林敬哲(Jing-Jer Lin)
dc.contributor.authorYu-Wen Kaoen
dc.contributor.author高郁雯zh_TW
dc.date.accessioned2021-06-16T05:36:31Z-
dc.date.available2019-08-01
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-12
dc.identifier.citation1. Allsopp, R.C., Cheshier, S., and Weissman, I.L. (2001). Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J Exp Med 193, 917-924.
2. Arnaudeau, C., Lundin, C., and Helleday, T. (2001). DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307, 1235-1245.
3. Azzalin, C.M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007). Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798-801.
4. Balk, B., Maicher, A., Dees, M., Klermund, J., Luke-Glaser, S., Bender, K., and Luke, B. (2013). Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 20, 1199-1205.
5. Batenburg, N.L., Mitchell, T.R., Leach, D.M., Rainbow, A.J., and Zhu, X.D. (2012). Cockayne Syndrome group B protein interacts with TRF2 and regulates telomere length and stability. Nucleic Acids Res 40, 9661-9674.
6. Beranek, D.T. (1990). Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res 231, 11-30.
7. Berger, J.M. (1998). Structure of DNA topoisomerases. Biochim Biophys Acta 1400, 3-18.
8. Bessler, J.B., Torredagger, J.Z., and Zakian, V.A. (2001). The Pif1p subfamily of helicases: region-specific DNA helicases? Trends Cell Biol 11, 60-65.
9. Blackburn, E.H. (1990). Telomeres: structure and synthesis. J Biol Chem 265, 5919-5921.
10. Boule, J.B., Vega, L.R., and Zakian, V.A. (2005). The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438, 57-61.
11. Boule, J.B., and Zakian, V.A. (2007). The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res 35, 5809-5818.
12. Bourns, B.D., Alexander, M.K., Smith, A.M., and Zakian, V.A. (1998). Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol Cell Biol 18, 5600-5608.
13. Calado, R.T., and Young, N.S. (2009). Telomere diseases. N. Engl. J. Med. 361, 2353-2365.
14. Cerritelli, S.M., Chon, H., and Crouch, R.J. (2011). A new twist for topoisomerase. Science 332, 1510-1511.
15. Cerritelli, S.M., and Crouch, R.J. (2009). Ribonuclease H: the enzymes in eukaryotes. FEBS J 276, 1494-1505.
16. Cesare, A.J., and Griffith, J.D. (2004). Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops. Mol Cell Biol 24, 9948-9957.
17. Chan, C.S., and Tye, B.K. (1983). Organization of DNA sequences and replication origins at yeast telomeres. Cell 33, 563-573.
18. Chen, Y.B., Yang, C.P., Li, R.X., Zeng, R., and Zhou, J.Q. (2005). Def1p is involved in telomere maintenance in budding yeast. J Biol Chem 280, 24784-24791.
19. Chen, Y.Z., Hashemi, S.H., Anderson, S.K., Huang, Y., Moreira, M.C., Lynch, D.R., Glass, I.A., Chance, P.F., and Bennett, C.L. (2006). Senataxin, the yeast Sen1p orthologue: characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease. Neurobiol Dis 23, 97-108.
20. Costa, A., Daidone, M.G., Daprai, L., Villa, R., Cantu, S., Pilotti, S., Mariani, L., Gronchi, A., Henson, J.D., Reddel, R.R., et al. (2006). Telomere maintenance mechanisms in liposarcomas: association with histologic subtypes and disease progression. Cancer Res 66, 8918-8924.
21. Counter, C.M., Meyerson, M., Eaton, E.N., and Weinberg, R.A. (1997). The catalytic subunit of yeast telomerase. Proc Natl Acad Sci USA 94, 9202-9207.
22. Crow, Y.J., Leitch, A., Hayward, B.E., Garner, A., Parmar, R., Griffith, E., Ali, M., Semple, C., Aicardi, J., Babul-Hirji, R., et al. (2006). Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat Genet 38, 910-916.
23. Cusanelli, E., and Chartrand, P. (2014). Telomeric noncoding RNA: telomeric repeat-containing RNA in telomere biology. Wiley Interdiscip Rev RNA5, 407-419.
24. Cusanelli, E., Romero, C.A., and Chartrand, P. (2013). Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol Cell 51, 780-791.
25. de Boer, J., and Hoeijmakers, J.H. (2000). Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453-460.
26. DeMarini, D.J., Winey, M., Ursic, D., Webb, F., and Culbertson, M.R. (1992). SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol Cell Biol 12, 2154-2164.
27. Diderich, K., Alanazi, M., and Hoeijmakers, J.H. (2011). Premature aging and cancer in nucleotide excision repair-disorders. DNA repair 10, 772-780.
28. Drolet, M., Bi, X., and Liu, L.F. (1994). Hypernegative supercoiling of the DNA template during transcription elongation in vitro. J Biol Chem 269, 2068-2074.
29. Drolet, M., Phoenix, P., Menzel, R., Masse, E., Liu, L.F., and Crouch, R.J. (1995). Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc Natl Acad Sci USA 92, 3526-3530.
30. El Hage, A., French, S.L., Beyer, A.L., and Tollervey, D. (2010). Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 24, 1546-1558.
31. Evans, E., Moggs, J.G., Hwang, J.R., Egly, J.M., and Wood, R.D. (1997). Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J 16, 6559-6573.
32. Evans, S.K., and Lundblad, V. (2000). Positive and negative regulation of telomerase access to the telomere. J Cell Sci 113 Pt 19, 3357-3364.
33. Foury, F., and Kolodynski, J. (1983). pif mutation blocks recombination between mitochondrial rho+ and rho- genomes having tandemly arrayed repeat units in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 80, 5345-5349.
34. Frank, P., Braunshofer-Reiter, C., and Wintersberger, U. (1998). Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII. FEBS lett 421, 23-26.
35. Gan, W., Guan, Z., Liu, J., Gui, T., Shen, K., Manley, J.L., and Li, X. (2011). R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25, 2041-2056.
36. Garvik, B., Carson, M., and Hartwell, L. (1995). Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15, 6128-6138.
37. Gomez-Gonzalez, B., Garcia-Rubio, M., Bermejo, R., Gaillard, H., Shirahige, K., Marin, A., Foiani, M., and Aguilera, A. (2011). Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J 30, 3106-3119.
38. Gottschling, D.E., Aparicio, O.M., Billington, B.L., and Zakian, V.A. (1990). Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751-762.
39. Gravel, S., Larrivee, M., Labrecque, P., and Wellinger, R.J. (1998). Yeast Ku as a regulator of chromosomal DNA end structure. Science 280, 741-744.
40. Greider, C.W., and Blackburn, E.H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405-413.
41. Groisman, R., Kuraoka, I., Chevallier, O., Gaye, N., Magnaldo, T., Tanaka, K., Kisselev, A.F., Harel-Bellan, A., and Nakatani, Y. (2006). CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev 20, 1429-1434.
42. Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A.F., Tanaka, K., and Nakatani, Y. (2003). The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357-367.
43. Haber, J.E. (1999). DNA recombination: the replication connection. Trends Biochem Sci 24, 271-275.
44. Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.
45. Hawtin, R.E., Stockett, D.E., Wong, O.K., Lundin, C., Helleday, T., and Fox, J.A. (2010). Homologous recombination repair is essential for repair of vosaroxin-induced DNA double-strand breaks. Oncotarget 1, 606-619.
46. Henning, K.A., Li, L., Iyer, N., McDaniel, L.D., Reagan, M.S., Legerski, R., Schultz, R.A., Stefanini, M., Lehmann, A.R., Mayne, L.V., et al. (1995). The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82, 555-564.
47. Hu, Z., Zhang, A., Storz, G., Gottesman, S., and Leppla, S.H. (2006). An antibody-based microarray assay for small RNA detection. Nucleic Acids Res 34, e52.
48. Huertas, P., and Aguilera, A. (2003). Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12, 711-721.
49. Iglesias, N., Redon, S., Pfeiffer, V., Dees, M., Lingner, J., and Luke, B. (2011). Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast. EMBO Rep 12, 587-593.
50. Itaya, M. (1990). Isolation and characterization of a second RNase H (RNase HII) of Escherichia coli K-12 encoded by the rnhB gene. Proc Natl Acad Sci USA 87, 8587-8591.
51. Ivessa, A.S., Zhou, J.Q., Schulz, V.P., Monson, E.K., and Zakian, V.A. (2002). Saccharomyces Rrm3p, a 5' to 3' DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev 16, 1383-1396.
52. Ivessa, A.S., Zhou, J.Q., and Zakian, V.A. (2000). The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100, 479-489.
53. Jeong, H.S., Backlund, P.S., Chen, H.C., Karavanov, A.A., and Crouch, R.J. (2004). RNase H2 of Saccharomyces cerevisiae is a complex of three proteins. Nucleic Acids Res 32, 407-414.
54. Keil, R.L., and McWilliams, A.D. (1993). A gene with specific and global effects on recombination of sequences from tandemly repeated genes in Saccharomyces cerevisiae. Genetics 135, 711-718.
55. Kim, H.D., Choe, J., and Seo, Y.S. (1999). The sen1(+) gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 38, 14697-14710.
56. Krogh, B.O., and Symington, L.S. (2004). Recombination proteins in yeast. Annu Rev Genet 38, 233-271.
57. Kule, C., Ondrejickova, O., and Verner, K. (1994). Doxorubicin, daunorubicin, and mitoxantrone cytotoxicity in yeast. Mol Pharmacol 46, 1234-1240.
58. Lahaye, A., Stahl, H., Thines-Sempoux, D., and Foury, F. (1991). PIF1: a DNA helicase in yeast mitochondria. EMBO J 10, 997-1007.
59. Larrivee, M., and Wellinger, R.J. (2006). Telomerase- and capping-independent yeast survivors with alternate telomere states. Nat Cell Biol 8, 741-747.
60. Le, S., Moore, J.K., Haber, J.E., and Greider, C.W. (1999). RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143-152.
61. Lee, S.K., Yu, S.L., Prakash, L., and Prakash, S. (2002). Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases. Mol Cell Biol 22, 4383-4389.
62. Lehmann, M., Franco, A., de Souza Prudente Vilar, K., Lukza Reguly, M., and de Andrade, H.H. (2003). Doxorubicin and two of its analogues are preferential inducers of homologous recombination compared with mutational events in somatic cells of Drosophila melanogaster. Mutat Res 539, 167-175.
63. Lendvay, T.S., Morris, D.K., Sah, J., Balasubramanian, B., and Lundblad, V. (1996). Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144, 1399-1412.
64. Li, X., and Manley, J.L. (2005). Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365-378.
65. Lin, C.Y., Chang, H.H., Wu, K.J., Tseng, S.F., Lin, C.C., Lin, C.P., and Teng, S.C. (2005). Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase delta-mediated telomere-telomere recombination in Saccharomyces cerevisiae. Eukaryot Cell 4, 327-336.
66. Lin, J.J., and Zakian, V.A. (1996). The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci USA 93, 13760-13765.
67. Lin, Y.H., Chang, C.C., Wong, C.W., and Teng, S.C. (2009). Recruitment of Rad51 and Rad52 to short telomeres triggers a Mec1-mediated hypersensitivity to double-stranded DNA breaks in senescent budding yeast. PLoS One 4, e8224.
68. Lindahl, T., and Wood, R.D. (1999). Quality control by DNA repair. Science 286, 1897-1905.
69. Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T.R. (1997). Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561-567.
70. Luke, B., Panza, A., Redon, S., Iglesias, N., Li, Z., and Lingner, J. (2008). The Rat1p 5' to 3' exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32, 465-477.
71. Lundblad, V., and Blackburn, E.H. (1993). An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347-360.
72. Lundin, C., Erixon, K., Arnaudeau, C., Schultz, N., Jenssen, D., Meuth, M., and Helleday, T. (2002). Different roles for nonhomologous end joining and homologous recombination following replication arrest in mammalian cells. Mol Cell Biol 22, 5869-5878.
73. Mangahas, J.L., Alexander, M.K., Sandell, L.L., and Zakian, V.A. (2001). Repair of chromosome ends after telomere loss in Saccharomyces. Mol Biol Cell 12, 4078-4089.
74. McClintock, B. (1941). The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 26, 234-282.
75. Mischo, H.E., Gomez-Gonzalez, B., Grzechnik, P., Rondon, A.G., Wei, W., Steinmetz, L., Aguilera, A., and Proudfoot, N.J. (2011). Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41, 21-32.
76. Mortensen, U.H., Bendixen, C., Sunjevaric, I., and Rothstein, R. (1996). DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci USA 93, 10729-10734.
77. Mu, D., and Sancar, A. (1997). Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. J Biol Chem 272, 7570-7573.
78. McEachern, M.J., and Haber, J.E. (2006). Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75, 111-135.
79. Nabetani, A., and Ishikawa, F. (2011). Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J. Biochem. 149, 5-14.
80. Nance, M.A., and Berry, S.A. (1992). Cockayne syndrome: review of 140 cases. Am J Med Genet 42, 68-84.
81. Nowotny, M., Cerritelli, S.M., Ghirlando, R., Gaidamakov, S.A., Crouch, R.J., and Yang, W. (2008). Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD. EMBO J 27, 1172-1181.
82. Nugent, C.I., Hughes, T.R., Lue, N.F., and Lundblad, V. (1996). Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249-252.
83. O'Donovan, A., Davies, A.A., Moggs, J.G., West, S.C., and Wood, R.D. (1994). XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature 371, 432-435.
84. Olovnikov, A.M. (1973). A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41, 181-190.
85. Ottaviani, A., Gilson, E., and Magdinier, F. (2008). Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie 90, 93-107.
86. Petermann, E., Orta, M.L., Issaeva, N., Schultz, N., and Helleday, T. (2010). Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 37, 492-502.
87. Pfeiffer, V., Crittin, J., Grolimund, L., and Lingner, J. (2013). The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO J 32, 2861-2871.
88. Reddel, R.R. (2000). The role of senescence and immortalization in carcinogenesis. Carcinogenesis 21, 477-484.
89. Redon, S., Reichenbach, P., and Lingner, J. (2010). The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38, 5797-5806.
90. Roberts, R.W., and Crothers, D.M. (1992). Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463-1466.
91. Roca, J. (1995). The mechanisms of DNA topoisomerases. Trends Biochem Sci 20, 156-160.
92. Roeder, R.G., Schwartz, L.B., and Sklar, V.E. (1976). Function, structure, and regulation of eukaryotic nuclear RNA polymerases. Symp. Soc. Dev. Biol., 29-52.
93. Roy, D., and Lieber, M.R. (2009). G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter. Mol Cell Biol 29, 3124-3133.
94. Roy, D., Zhang, Z., Lu, Z., Hsieh, C.L., and Lieber, M.R. (2010). Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol Cell Biol 30, 146-159.
95. Sandell, L.L., and Zakian, V.A. (1993). Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729-739.
96. Santos-Pereira, J.M., Herrero, A.B., Garcia-Rubio, M.L., Marin, A., Moreno, S., and Aguilera, A. (2013). The Npl3 hnRNP prevents R-loop-mediated transcription-replication conflicts and genome instability. Genes Dev 27, 2445-2458.
97. Schoeftner, S., and Blasco, M.A. (2008). Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10, 228-236.
98. Schulz, V.P., and Zakian, V.A. (1994). The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145-155.
99. Shay, J.W., and Bacchetti, S. (1997). A survey of telomerase activity in human cancer. Eur J Cancer 33, 787-791.
100. Sijbers, A.M., de Laat, W.L., Ariza, R.R., Biggerstaff, M., Wei, Y.F., Moggs, J.G., Carter, K.C., Shell, B.K., Evans, E., de Jong, M.C., et al. (1996). Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86, 811-822.
101. Singer, M.S., and Gottschling, D.E. (1994). TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404-409.
102. Skourti-Stathaki, K., Proudfoot, N.J., and Gromak, N. (2011). Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42, 794-805.
103. Smith, J.R., and Pereira-Smith, O.M. (1996). Replicative senescence: implications for in vivo aging and tumor suppression. Science 273, 63-67.
104. Stein, H., and Hausen, P. (1969). Enzyme from calf thymus degrading the RNA moiety of DNA-RNA Hybrids: effect on DNA-dependent RNA polymerase. Science 166, 393-395.
105. Steinmetz, E.J., Conrad, N.K., Brow, D.A., and Corden, J.L. (2001). RNA-binding protein Nrd1 directs poly(A)-independent 3'-end formation of RNA polymerase II transcripts. Nature 413, 327-331.
106. Steinmetz, E.J., Warren, C.L., Kuehner, J.N., Panbehi, B., Ansari, A.Z., and Brow, D.A. (2006). Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 24, 735-746.
107. Strasser, K., Masuda, S., Mason, P., Pfannstiel, J., Oppizzi, M., Rodriguez-Navarro, S., Rondon, A.G., Aguilera, A., Struhl, K., Reed, R., et al. (2002). TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304-308.
108. Subhawong, A.P., Heaphy, C.M., Argani, P., Konishi, Y., Kouprina, N., Nassar, H., Vang, R., and Meeker, A.K. (2009). The alternative lengthening of telomeres phenotype in breast carcinoma is associated with HER-2 overexpression. Mod Pathol 22, 1423-1431.
109. Sugimoto, N., Nakano, S., Katoh, M., Matsumura, A., Nakamuta, H., Ohmichi, T., Yoneyama, M., and Sasaki, M. (1995). Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34, 11211-11216.
110. Symington, L.S. (2002). Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66, 630-670, table of contents.
111. Taggart, A.K., Teng, S.C., and Zakian, V.A. (2002). Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023-1026.
112. Teng, S.C., Chang, J., McCowan, B., and Zakian, V.A. (2000). Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6, 947-952.
113. Teng, S.C., and Zakian, V.A. (1999). Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19, 8083-8093.
114. Thomas, M., White, R.L., and Davis, R.W. (1976). Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc Natl Acad Sci USA 73, 2294-2298.
115. Tomaska, L., McEachern, M.J., and Nosek, J. (2004). Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Lett 567, 142-146.
116. Troelstra, C., van Gool, A., de Wit, J., Vermeulen, W., Bootsma, D., and Hoeijmakers, J.H. (1992). ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71, 939-953.
117. Ursic, D., DeMarini, D.J., and Culbertson, M.R. (1995). Inactivation of the yeast Sen1 protein affects the localization of nucleolar proteins. Mol Gen Genet 249, 571-584.
118. Ursic, D., Himmel, K.L., Gurley, K.A., Webb, F., and Culbertson, M.R. (1997). The yeast SEN1 gene is required for the processing of diverse RNA classes. Nucleic Acids Res 25, 4778-4785.
119. Vasiljeva, L., and Buratowski, S. (2006). Nrd1 interacts with the nuclear exosome for 3' processing of RNA polymerase II transcripts. Mol Cell 21, 239-248.
120. Venema, J., Mullenders, L.H., Natarajan, A.T., van Zeeland, A.A., and Mayne, L.V. (1990). The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci USA 87, 4707-4711.
121. Virta-Pearlman, V., Morris, D.K., and Lundblad, V. (1996). Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev 10, 3094-3104.
122. Wang, J.C. (1971). Interaction between DNA and an Escherichia coli protein omega. J Mol Biol 55, 523-533.
123. Wang, J.C. (2002). Cellular roles of DNA topoisomerases: a molecular perspective. Nature reviews. Nat Rev Mol Cell Biol 3, 430-440.
124. Winkler, G.S., and Hoeijmakers, J.H. (1998). From a DNA helicase to brittle hair. Nat Genet 20, 106-107.
125. Woudstra, E.C., Gilbert, C., Fellows, J., Jansen, L., Brouwer, J., Erdjument-Bromage, H., Tempst, P., and Svejstrup, J.Q. (2002). A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929-933.
126. Yu, T.Y., Kao, Y.W., and Lin, J.J. (2014). Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proc Natl Acad Sci USA 111, 3377-3382.
127. Zakian, V.A. (1995). Telomeres: beginning to understand the end. Science 270, 1601-1607.
128. Zhou, J., Monson, E.K., Teng, S.C., Schulz, V.P., and Zakian, V.A. (2000). Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 289, 771-774.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56590-
dc.description.abstract端粒是位於染色體末端的結構,在細胞功能中扮演重要的角色。除了避免染色體間的末端融合,還維持染色體的穩定性並協助複製的完成,也因此缺少端粒會造成細胞死亡或老化。在酵母菌Saccharomyces cerevisiae中,其端粒為250至300鹼基對(base pair)的TG1-3/C1-3A重複核酸序列組成,由於末端複製的問題,端粒長度隨著DNA複製次數增加而逐漸縮短,直到無法再維持細胞生長,則進入老化(senescence)階段。缺乏端粒酶活性的酵母菌細胞會利用端粒DNA重組(telomere recombination)的方式逃過老化的命運,而我們先前的研究發現到TERRA (telomere RNA transcript)會參與端粒重組的調控。TERRA是由RNA polymerase II由sub-telomeric區域往染色體末端所轉錄出一長片段non-coding的RNA,我們先前研究發現到TERRA會形成DNA:RNA hybrid的結構並促進老化及端粒重組發生。因此我們想知道R-loop結構,包含DNA:RNA hybrid及單股DNA的三股結構是否參與在端粒重組的調控,如果是的話,又是如何調控?首先,我們分析了在已知會影響R-loop生成的蛋白突變時所產生的端粒重組,觀察到過量表現RNase H1或RNase H2會延後老化及端粒重組,同樣地,在過量表現核酸螺旋酶,Sen1及Pif1,或是拓撲異構酶I (topoisomerase I)也都會延遲端粒重組,這些結果顯示R-loop結構與端粒重組有相關性。接著也利用DNA damage agents來阻礙TERRA的轉錄,發現確實會延遲端粒重組的發生。另外,我們發現到R-loop結構可能會經由引發類似於transcription-coupled repair (TCR)的機制而促使端粒重組的發生,當TCR起始蛋白Rad26發生突變則會延遲端粒重組發生,與之會形成複合體的Def1蛋白突變也會得到一樣的結果,兩者同時突變卻沒有更顯著的影響,表示兩者參與在同樣的端粒重組調控,而這樣的調控可能會被Rad28所抑制。在我的實驗當中觀察到TERRA會形成R-loop的結構進而促進端粒重組,且初步確認端粒重組會由TCR相關蛋白所調控。zh_TW
dc.description.abstractTelomere, the end structure of chromosome, plays an important role in cellular function that allows complete replication and maintains the integrity of chromosomes. Due to the end-replication problem, the telomere length gets shorter and shorter after DNA replications. The critically short telomere cannot support cell growth that eventually causes senescence. In S. cerevisiae cells lacking telomerase, telomere recombination is activated to bypass senescence. Our previous results show that telomere RNA transcript (TERRA) plays a role in regulating telomere recombination. TERRA is a long non-coding RNA that is transcribed by RNA polymerase II. We found TERRA associates with telomeres in a form of DNA:RNA hybrid to regulate senescence and telomere recombination. Here, we test if an R-loop structure is involved in telomere recombination. Using yeast Saccharomyces cerevisiae as a model system, we analyzed telomere recombination phenotype in telomerase-deficient cells with mutation of genes that affect R-loop formation. We found overexpression of RNase H1 or H2 delayed senescence and telomere recombination. Expressing excess amounts of helicases, Sen1 and Pif1, or topoisomerase I also delay telomere recombination. These results suggest a role of R-loop structure in telomere recombination. DNA damage agents that block transcription appeared to delay telomere recombination. Our results suggest for a role of TERRA in telomere recombination. Then, we want to figure out the regulation of telomere recombination. We found that Rad26, the initiator of transcription-coupled repair, is involved in telomere recombination. And so is Def1, which forms complex with Rad26. Specifically, we found TERRA in a form of R-loop is involved in regulating telomere recombination. And, telomere recombination may be regulated similarly through transcription-coupled repair mechanism. Since the telomere structure in yeast and human are virtually the same, it is likely that similar mechanism might be involved in regulating the formation of ALT (alternative lengthening of telomeres) cells during senescence in mammalian cells.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:36:31Z (GMT). No. of bitstreams: 1
ntu-103-R01442004-1.pdf: 2052548 bytes, checksum: 241c122c887e45a8d8870ad2cf09aa37 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
附圖目錄 vii
縮寫檢索表 viii
前言 1
材料與方法 13
實驗結果 24
討論 31
參考文獻 35
附圖 47
dc.language.isozh-TW
dc.title探討酵母菌中R-loop結構與端粒重組之關聯zh_TW
dc.titleCharacterization of the relationship between R-loop and telomere recombination in Saccharomyces cerevisiaeen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄(Shu-Chun Teng),李財坤(Tsai-Kun Li),鄭子豪(Tzu-Hao Cheng)
dc.subject.keyword端粒,端粒重組,zh_TW
dc.subject.keywordtelomere,R-loop,telomere recombination,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2014-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved