請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56583完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧子彬(Tzu-Pin Lu) | |
| dc.contributor.author | Kai-Yuan Cheng | en |
| dc.contributor.author | 鄭凱元 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:36:07Z | - |
| dc.date.available | 2022-12-31 | |
| dc.date.copyright | 2020-09-03 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-04 | |
| dc.identifier.citation | 1. Vatta, M., et al., Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum Mol Genet, 2002. 11(3): p. 337-45. 2. Nademanee, K., Sudden unexplained death syndrome in Southeast Asia. Am J Cardiol, 1997. 79(6a): p. 10-1. 3. Brugada, J., P. Brugada, and R. Brugada, The syndrome of right bundle branch block ST segment elevation in V1 to V3 and sudden death--the Brugada syndrome. Europace, 1999. 1(3): p. 156-66. 4. Matsuo, K., et al., The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. European Heart Journal, 1999. 20(6): p. 465-470. 5. Brugada, R., et al., Brugada syndrome. Methodist DeBakey cardiovascular journal, 2014. 10(1): p. 25-28. 6. Brugada, P., R. Brugada, and J. Brugada, The Brugada syndrome. Current Cardiology Reports, 2000. 2(6): p. 507-514. 7. Berne, P. and J. Brugada, Brugada Syndrome 2012. Circulation Journal, 2012. 76(7): p. 1563-1571. 8. Juang, J.-M.J., et al., Prevalence and prognosis of Brugada electrocardiogram patterns in an elderly Han Chinese population: a nation-wide community-based study (HALST cohort)†. EP Europace, 2016. 17(suppl_2): p. ii54-ii62. 9. Antzelevitch, C., Brugada syndrome. Pacing Clin Electrophysiol, 2006. 29(10): p. 1130-59. 10. Mizusawa, Y. and A.A. Wilde, Brugada syndrome. Circ Arrhythm Electrophysiol, 2012. 5(3): p. 606-16. 11. Benito, B., et al., Gender differences in clinical manifestations of Brugada syndrome. J Am Coll Cardiol, 2008. 52(19): p. 1567-73. 12. Chen, Q., et al., Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature, 1998. 392(6673): p. 293-296. 13. van Hoorn, F., et al., SCN5A mutations in Brugada syndrome are associated with increased cardiac dimensions and reduced contractility. PloS one, 2012. 7(8): p. e42037-e42037. 14. Tan, H.L., et al., A sodium-channel mutation causes isolated cardiac conduction disease. Nature, 2001. 409(6823): p. 1043-7. 15. Priori, S.G., et al., Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: A prospective evaluation of 52 families. Circulation, 2000. 102(20): p. 2509-15. 16. Eckardt, L., et al., Long-term prognosis of individuals with right precordial ST-segment-elevation Brugada syndrome. Circulation, 2005. 111(3): p. 257-263. 17. Probst, V., et al., SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ Cardiovasc Genet, 2009. 2(6): p. 552-7. 18. Juang, J.J. and M. Horie, Genetics of Brugada syndrome. J Arrhythm, 2016. 32(5): p. 418-425. 19. Bezzina, C.R., et al., Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet, 2013. 45(9): p. 1044-9. 20. Li, Y., et al., Genotype imputation. Annual review of genomics and human genetics, 2009. 10: p. 387-406. 21. Marchini, J. and B. Howie, Genotype imputation for genome-wide association studies. Nature Reviews Genetics, 2010. 11(7): p. 499-511. 22. Howie, B.N., P. Donnelly, and J. Marchini, A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet, 2009. 5(6): p. e1000529. 23. Abbott, G.W. and S.A. Goldstein, Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism. Faseb j, 2002. 16(3): p. 390-400. 24. Antzelevitch, C., et al., Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation, 2005. 111(5): p. 659-70. 25. Wilde, A.A., et al., Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation, 2002. 106(19): p. 2514-9. 26. Fan, C.T., J.C. Lin, and C.H. Lee, Taiwan Biobank: a project aiming to aid Taiwan's transition into a biomedical island. Pharmacogenomics, 2008. 9(2): p. 235-46. 27. Vandenbroucke, J.P. and N. Pearce, Case-control studies: basic concepts. Int J Epidemiol, 2012. 41(5): p. 1480-9. 28. Steiß, V., et al., PERMORY-MPI: a program for high-speed parallel permutation testing in genome-wide association studies. Bioinformatics, 2012. 28(8): p. 1168-1169. 29. Delaneau, O., J. Marchini, and J.-F. Zagury, A linear complexity phasing method for thousands of genomes. Nature Methods, 2012. 9(2): p. 179-181. 30. Auton, A., et al., A global reference for human genetic variation. Nature, 2015. 526(7571): p. 68-74. 31. Juang, J.-M.J., et al., Disease-Targeted Sequencing of Ion Channel Genes identifies de novo mutations in Patients with Non-Familial Brugada Syndrome. Scientific Reports, 2014. 4(1): p. 6733. 32. Chen, C.-H., et al., Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Human molecular genetics, 2016. 25(24): p. 5321-5331. 33. van Dijk, E.L., et al., Ten years of next-generation sequencing technology. Trends Genet, 2014. 30(9): p. 418-26. 34. Ng, P.C. and E.F. Kirkness, Whole genome sequencing. Methods Mol Biol, 2010. 628: p. 215-26. 35. Hale, M.L., T.M. Burg, and T.E. Steeves, Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PloS one, 2012. 7(9): p. e45170-e45170. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56583 | - |
| dc.description.abstract | 背景:布魯蓋達症候群為一遺傳性心律不整之罕見疾病,此疾病會造成心臟電流出現異常而提升心因性猝死之風險。布魯蓋達症候群於歐洲之盛行率約為0.01-0.05%,在亞洲地區較高約為0.12%。目前布魯蓋達症候群被認為是體染色體顯性遺傳疾病,其中位於第三條染色體上的SCN5A基因變異為主要的風險因子,不過在臨床上約有20-30%的患者帶有SCN5A基因變異,另外仍有其他離子通道相關基因被發現與布魯蓋達症候群有關,故布魯蓋達症候群在臨床上僅約30-35%之病人其致病原因是由於遺傳因素所導致,反之則代表有超過65%的患者其致病過程仍屬未知。過去研究針對歐洲地區族群進行布魯蓋達症候群全基因體關聯性研究,其結果顯示在歐洲地區族群中有兩個顯著的遺傳變異位點(rs10628132及rs9388451),然而由於族群與地區間的布魯蓋達症候群發病機率有所差異,因此本研究預期針對台灣布魯蓋達症候群患者之基因資料找出重要的遺傳變異位點,並驗證過去研究所提出的布魯蓋達症候群相關遺傳變異,以提供布魯蓋達症候群遺傳因子以及致病機轉更進一步的了解。 研究方法:本研究之病例組來自於全台灣各地醫療院所共190位患者,此190位患者中又依照SCN5A基因是否變異分為SCN5A變異組28人以及野生型SCN5A組162人;正常對照組資料自台灣人體生物資料庫15,981人中抽樣760人。這些個體透過Affymetrix公司出品之Axiom Genome_Wide TWB Array Plate微陣列晶片進行基因型鑑定。本論文透過基因插補增加台灣族群基因序列的覆蓋率,接著使用費雪精確檢定針對整體布魯蓋達症候群患者、SCN5A變異組以及野生型SCN5A組進行單一因子分析。另外,針對整體布魯蓋達症候群患者分別建立相加、顯性及隱性模式的單一因子Cox比例風險模型,以了解不同遺傳模式的單一因子對於布魯蓋達症候群之風險情形。最後使用多基因遺傳風險評分以評估多個遺傳位點同時對疾病的影響。 結果:針對全基因體進行基因插補後,從原始晶片上的648,629個遺傳位點擴展至8,081,033個遺傳位點後進行後續分析。在單一因子分析上,整體布魯蓋達症候群患者全基因體中共有19個顯著位點(p value < 6.187×〖10〗^(-9)(邦費羅尼校正))。單一因子Cox比例風險模型則可以若病患在特定遺傳位點中帶有風險位點,則該病患之平均發病年齡相較於其他病患而言將會提前大約十五年。多基因遺傳風險分數模型中,分數落在較低區間的健康族群帶有布魯蓋達症候群的風險顯著的低於分數落在較高區間的健康族群。 結論:本研究於發現了許多在台灣族群中特有的布魯蓋達症候群相關遺傳變異,未來仍需透過其他外部資料進行驗證。此研究結果有助於了解布魯蓋達症候群致病機轉及生物傳導途徑,以協助未來尋找布魯蓋達症候群早期診斷的生物標記以及藥物上開發提供參考依據。 | zh_TW |
| dc.description.abstract | Introduction: Brugada syndrome (BrS) is a rare disease that increases the risk of abnormal heart rhythms and sudden cardiac death. The prevalence of BrS is estimated to be 1-5 cases per 10,000 people, and its incidence and prevalence rates are higher in the Asia populations (12 cases per 10,000 people). BrS is a genetic disorder in which the electrical activity within the heart is abnormal, and SCN5A is considered as the major genetic risk factor. However, there are about 20-30% of BrS patients can be attributed to SCN5A; furthermore, since BrS patients can also be attributed to some ion channel related SNPs, the cause of BrS among 30-35% BrS patients is due to genetic factors, which means that there are more than 65% BrS patients remain unknown genetic disorder pattern. In a previous GWAS study, two SNP loci (rs10428132, rs9388451) were reported in the Europe population. Although these two SNP loci were validated in Taiwanese, whether other important SNPs exist in Taiwanese patients only remains unclear. Therefore, the aim of this study is to identify novel SNPs associated with BrS in Taiwanese by using the imputed whole genome variants. Materials and method: A total of 190 BrS cases were recruited from hospitals and medical centers in Taiwan, and the BrS cases can be further divided into SCN5A mutation (28 cases) and SCN5A wild type (162 cases) by whether the patient’s SCN5A is mutated. A total of 760 matched healthy controls were selected from Taiwan Biobank, which has collected 15,981 healthy samples. The genotyping experiments were performed by using the Axiom Genome_Wide TWB Array Plate from the Affymetirx company. The DNA variants of all 950 samples were imputed based on the allele frequencies obtained from the East Asian populations in the 1000 genome project after quality control, which also increased the coverage of SNP in Taiwanese population. In addition, a Fisher exact test based on the imputed data of three groups of cases (total BrS, SCN5A mutation, SCN5A wild type) were used to evaluate the effect of SNP locus. A Cox proportional hazard model was built by using three genetic models (additive, dominant, recessive) for total BrS cases to investigate the diagnostic effect. Lastly, a polygenic risk score model was used to evaluate the combination effects of multi-markers. Result: All 950 samples passing the quality control steps, and the SNP number was increased to 8,081,033 from 648,629 after the genome-wide imputation process. A total of 19 SNPs were significant in Logistic regression of total BrS cases(p value < 6.187×〖10〗^(-9) (bonferroni correction)). In Cox proportional hazard model analysis, if a patient carries risk allele on specific SNPs, the average offset age was found to be 15 years earlier than the patients without risk allele. In the result of Polygenic Risk Score model, the healthy population with lower score have a significantly lower risk of suffering from BrS. Conclusion: Several novel DNA variants were identified in Taiwanese BrS patients, and further investigations were warranted to elucidate their etiology and functional impact in BrS. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:36:07Z (GMT). No. of bitstreams: 1 U0001-2507202012053700.pdf: 3175659 bytes, checksum: 235e8fe0a07c7e24e66c92865606987f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 致謝 i 中文摘要 ii Abstract iv 目錄 vi 圖目錄 viii 表目錄 x 第一章 前言 1 第一節 研究背景 1 第二節 研究動機及重要性 2 第三節 研究目的 5 第二章 方法及材料 6 第一節 研究對象與資料蒐集 6 第二節 品質控管(Quality control, QC) 7 第三節 基因插補(Genetic imputation) 9 第四節 單一因子分析(single-marker analysis) 10 第五節 Cox比例風險模型(Cox proportional hazard model) 10 第六節 多基因遺傳風險評分(Polygenic risk score, PRS) 11 第三章 研究結果 13 第一節 人口學變項分布 13 第二節 品質控管 13 第三節 基因插補 13 第四節 全基因體關聯性分析 14 第五節 Cox比例風險模型 15 第六節 多基因遺傳風險評分 16 第四章 討論 17 第一節 不同人種之間位點比較 17 第二節 使用不同參考數據進行基因插補的結果比較 17 第三節 多基因遺傳風險評分參數選擇 19 第四節 基因插補法跟全外顯子定序與全基因組定序的比較 20 第五節 研究總結 21 第六節 研究限制 22 第五章 結論 23 參考文獻 24 附錄 27 圖目錄 圖1. 品質控管流程圖 27 圖2. 基因插補流程圖 28 圖3. 病例組與正常對照組之主成分分析圖 (PC1-PC4) 29 圖4. SCN5A變異組與正常對照組之主成分分析圖 (PC1-PC4) 30 圖5. 野生型SCN5A組與正常對照組之主成分分析圖 (PC1-PC4) 31 圖6. 病例組與正常對照組之曼哈頓圖 32 圖7. SCN5A變異組與正常對照組之曼哈頓圖 33 圖8. 野生型SCN5A組與正常對照組之曼哈頓圖 34 圖9. 相加遺傳模式火山圖 35 圖10. 顯性遺傳模式火山圖 36 圖11. 隱性遺傳模式火山圖 37 圖12. 相加遺傳模式顯著遺傳位點存活曲 38 圖13. 顯性遺傳模式顯著遺傳位點存活曲線圖 39 圖14. 隱性遺傳模式顯著遺傳位點存活曲線圖 40 圖15. 離子通道相關基因多基因遺傳風險評分百分比圖 41 圖16. 布魯蓋達症候群關聯性研究顯著位點於東亞族群與歐洲族群次要等位基因頻率比較圖 42 圖17. 布魯蓋達症候群關聯性研究顯著位點於歐洲族群與台灣族群次要等位基因頻率比較圖 43 圖18. 布魯蓋達症候群關聯性研究顯著位點於東亞族群與台灣族群次要等位基因頻率比較圖 44 圖19. 一般變異位點使用不同參考數據進行基因插補結果比較圖 45 圖20. 次要等位基因頻率0-1%變異位點使用不同參考數據進行基因插補結果比較圖 46 圖21. 次要等位基因頻率1-5%變異位點使用不同參考數據進行基因插補結果比較圖 47 圖22. 亞洲地區與歐洲地區之間等位基因頻率顯著差異變異位點使用不同參考數據進行基因插補結果比較圖 48 表目錄 表1 整體病例組顯著位點資訊 49 表2 三組病患分類條件下皆顯著位點資訊(SCN5A+) 50 表3 相加遺傳模式顯著位點平均發病年齡 51 表4 顯性遺傳模式顯著位點平均發病年齡 52 表5 隱性遺傳模式顯著位點平均發病年齡 53 表6 相加遺傳模式顯著位點資訊(p<1×10-5) 54 表7 顯性遺傳模式顯著位點資訊(p<1×10-5) 55 表8 隱性遺傳模式顯著位點資訊(p<1×10-5) 56 表9 離子通道相關基因多基因遺傳風險分數分析 57 表10 離子通道相關基因多基因遺傳風險分數勝算比(*表在顯著水準為0.05下存在顯著差異之區間) 58 表11 東亞族群與歐洲族群次要等位基因頻率顯著差異位點(前十筆) 59 表12 歐洲族群與台灣族群次要等位基因頻率顯著差異位點(前十筆) 60 表13 東亞族群與台灣族群次要等位基因頻率顯著差異位點(前十筆) 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 多基因遺傳風險評分 | zh_TW |
| dc.subject | 布魯蓋達症候群 | zh_TW |
| dc.subject | 存活分析 | zh_TW |
| dc.subject | 全基因體關聯性研究 | zh_TW |
| dc.subject | 基因插補 | zh_TW |
| dc.subject | PRS | en |
| dc.subject | genetic imputation | en |
| dc.subject | Brugada syndrome | en |
| dc.subject | GWAS | en |
| dc.subject | survival | en |
| dc.title | 台灣布魯蓋達症候群全基因插補暨關聯性研究 | zh_TW |
| dc.title | A genome-wide association and imputation study of Brugada Syndrome in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭自宏(Tzu-Hung Hsiao),蕭朱杏(Chuhsing Kate Hsiao),郭柏秀(Po-Hsiu Kuo) | |
| dc.subject.keyword | 布魯蓋達症候群,基因插補,全基因體關聯性研究,存活分析,多基因遺傳風險評分, | zh_TW |
| dc.subject.keyword | Brugada syndrome,genetic imputation,GWAS,survival,PRS, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202001846 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-05 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2507202012053700.pdf 未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
