Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56562
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章(Fi-John Chang)
dc.contributor.authorYu-Chung Wangen
dc.contributor.author王昱中zh_TW
dc.date.accessioned2021-06-16T05:34:59Z-
dc.date.available2015-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citation1.Akter, T. and Simonovic, S. P. 'Modelling uncertainties in short-term reservoir operation using fuzzy sets and a genetic algorithm/Modelisation d’incertitudes dans la gestion de barrage a court terme grace a des ensembles flous et a un algorithme genetique.' Hydrological sciences journal 49.6 (2004).
2.Basu, M. 'Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II.' International Journal of Electrical Power & Energy Systems 30.2 (2008): 140-149.
3.Chang, F. J. and Wang, K. W. 'A systematical water allocation scheme for drought mitigation.' Journal of Hydrology 507 (2013): 124-133.
4.Chang, F. J. and Chen, L. 'Real-coded genetic algorithm for rule-based flood control reservoir management.' Water Resources Management 12.3 (1998): 185-198.
5.Chang, F. J. and Chang, Y. T. 'Adaptive neuro-fuzzy inference system for prediction of water level in reservoir.' Advances in Water Resources 29.1 (2006): 1-10.
6.Chang, F. J., Chen, L. and Chang, L. C. 'Optimizing the reservoir operating rule curves by genetic algorithms.' Hydrological processes 19.11 (2005): 2277-2289.
7.Chang, L. C. and Chang, F. J. 'Intelligent control for modelling of real‐time reservoir operation.' Hydrological Processes 15.9 (2001): 1621-1634.
8.Chang, L. C. and Chang, F. J. 'Multi-objective evolutionary algorithm for operating parallel reservoir system.' Journal of hydrology 377.1 (2009): 12-20.
9.Chang, Y. T., Chang, L. C. and Chang, F. J. 'Intelligent control for modeling of real‐time reservoir operation, part II: artificial neural network with operating rule curves.' Hydrological Processes 19.7 (2005): 1431-1444.
10.Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. 'A fast and elitist multiobjective genetic algorithm: NSGA-II.' Evolutionary Computation, IEEE Transactions on 6.2 (2002): 182-197.
11.Deb, K. 'Multi-objective optimization using evolutionary algorithms.' Vol. 16. John Wiley & Sons, (2001): 171-260.
12.Dhanalakshmi, S., Kannan, S., Mahadevanm, K. and Baskar, S. 'Application of modified NSGA-II algorithm to combined economic and emission dispatch problem.' International Journal of Electrical Power & Energy Systems 33.4 (2011): 992-1002.
13.Elferchichi, A., Gharsallah, O., Nouiri, I., Lebdi, F. and Lamaddalena, N. 'The genetic algorithm approach for identifying the optimal operation of a multi-reservoirs on-demand irrigation system.' Biosystems engineering 102.3 (2009): 334-344.
14.Hasebe, M. and Nagayama, Y. 'Reservoir operation using the neural network and fuzzy systems for dam control and operation support.' Advances in Engineering Software 33.5 (2002): 245-260.
15.Huang, W. C., Hsieh, C. L., Chou, C. C. and Lin, R. T. 'Management of water disputes using multireservoir operations.' Journal of the Chinese Institute of Engineers 34.4 (2011): 467-480.
16.Jeyadevi, S., Baskar, S., Babulal, C. K. and Willjuice Iruthayarajan, W. 'Solving multiobjective optimal reactive power dispatch using modified NSGA-II.' International Journal of Electrical Power & Energy Systems 33.2 (2011): 219-228.
17.Kuiper, E. 'Water Resources Development; planning, engineering and economics.' (1965).
18.Panigrahi, D. P. and Mujumdar, P. P. 'Reservoir operation modelling with fuzzy logic.' Water Resources Management 14.2 (2000): 89-109.
19.Srinivas, N. and Deb, K. 'Muiltiobjective optimization using nondominated sorting in genetic algorithms.' Evolutionary computation 2.3 (1994): 221-248.
20.Tsai, A. Y. and Huang, W. C. 'Impact of climate change on water resources in Taiwan.' Terr. Atmos. Ocean. Sci., 22, XXX-XXX, doi: 10.3319 (2011).
21.Wang, K. W., Chang, L. C. and Chang, F. J. 'Multi-tier interactive genetic algorithms for the optimization of long-term reservoir operation.' Advances in Water Resources 34.10 (2011): 1343-1351.
22.Zahraie, B. and Hosseini, S. M. 'Development of reservoir operation policies considering variable agricultural water demands.' Expert Systems with Applications 36.3 (2009): 4980-4987.
23.Zitzler, E. and Thiele, T. 'Multiobjective optimization using evolutionary algorithms—a comparative case study.' Parallel problem solving from nature—PPSN V. Springer Berlin Heidelberg, (1998): 292-301.
24.王國威, 2006, “運用懲罰機制遺傳演算法於水庫颱洪操作之規劃”, 淡江大學水資源及環境工程學系碩士論文。
25.石明輝、張良正, 1999, “基因演算法在多水庫多目標規劃之應用”, 第十屆水利工程研討會論文集, 第J47-J53頁。
26.江柏寬, 2002, “以進化演算法應用於德基水庫即時操作之研究”, 私立中華大學土木工程學系碩士論文。
27.林尉濤, 2002, “農業水資源調配及乾旱因應對策”, 農業工程研討會論文集, 第39-48頁。
28.邱昱禎, 2003, “模糊規劃理論與優選法於水庫操作之研究”, 國立臺灣大學生物環境系統工程學系碩士論文。
29. 張斐章、張麗秋, 1999, “智慧型水庫即時操作控制系統”, 農業工程學報, Vol. 45, No. 4, 第18-30頁。
30.張斐章、張麗秋, 2010, “類神經網路導論-原理與應用”, 滄海書局。
31.陳莉, 1995, “以物件導向之遺傳演算法優選水庫運用規線之研究”, 國立臺灣大學生物環境系統工程學系博士論文。
32.黃文政, 2001, “模糊理論在河川流量預測及水資源情勢分析之研究(2/2) ”, 國家科學委員會研究報告。
33.黃文政, 2010, “水庫乾旱預警系統---風險型決策模式之發展與應用”, 工程科技通訊, Vol.106, 第217-221頁。
34.黃文政、周家慶, 2008, “桃園地區農業休耕時機之探討”, 農業工程學報, 第54卷第2期, 第21-34頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56562-
dc.description.abstract臺灣地區近年來由於人口成長及工商產業發展情況下,用水需求逐年增加,乾旱期間用水不足時,多以停灌休耕之方式解決用水不足之窘境,調用農業用水已穩定供應公共用水需求,面對地區水資源時空分布不均及日益不足等問題,如何在不同用水需求下進行水庫操作使其儘可能滿足各用水標的,以善用水資源並維持其永續經營為當前首要課題。藉此,為確保水資源及農業永續經營與發展目標,本研究擬建置因應用水需求成長之智慧型農業水資源調配策略,提供在乾旱時期最佳調配策略下,稻米一期作期間的季缺水指標推估資訊,以協助於水庫管理人員能即早進行評估與決策作業。
本研究以石門水庫作為研究區域,根據文獻回顧以及水庫歷年多目標運用統計資料整理,探討石門水庫供水目標的轉變,擬訂出九種未來可能發生的用水需求情況,針對不同的需水情況,透過系統分析方法,以模擬法(based on M-5 rules)及優選法(NSGA-II optimal search)對水庫放水序列進行模擬及搜尋,結果以優選法能搜尋到較低的缺水率,證實非支配排序遺傳演算法-II對於水庫操作問題具有良好的表現。
類神經網路具有學習、處理複雜的問題與不確定性的特性,本研究透過建置倒傳遞類神經網路(BPNN)及調適性網路模糊推論系統(ANFIS),以用於推估乾旱時期季長期缺水率,篩選具支配性的輸入因子及訂定門檻值,結合優選法所搜尋出來的缺水率用於網路的輸出端上進行網路訓練,研究結果顯示類神經網路對於公共及農業缺水率皆具有精準的推估, ANFIS模式在不同子集合設定上皆具有不錯的表現,提供成為水資源調配管理之參考依據。
zh_TW
dc.description.abstractThe population growth and economic development in Taiwan has led to a tremendous demand for natural water resources. In recent years, water shortage problems frequently occur in northern Taiwan such that water is usually transferred from irrigation sectors to public sectors during drought periods. In response to the uneven spatio-temporal distribution of water resources and the problems of increasing water shortages in this region, it is a primary and critical issue to simultaneously satisfy multiple water objectives through adequate reservoir operations for integrated water resources management. For sustaining water resources and agricultural development, this study intends to build up the optimal agricultural water resources allocation strategies adapting to the growing water demands of both agricultural and public sectors. The optimal allocation strategies are expected to adequately suggest quarterly water shortage indexes for the period of the first paddy crop such that early assessment and decisions on water allocation can be made for drought mitigation management.
The Shihmen Reservoir in northern Taiwan is used as a case study. According to previous studies and historical multi-objective reservoir operation data of the Shihmen Reservoir, this study investigates the changes in water supply targets and design possible nine water demand conditions that may occur in the future. Based on these designed conditions, we use a system analysis approach to conducting the simulation (based on M-5 rules) and optimization search (by the non-dominated sorting genetic algorithm-II (NSGA-II)) of the reservoir operation sequences. The results indicate that the NSGA-II method can search the optimal water allocation series meeting the objectives subject to restrictions and producing a lower water shortage index. It demonstrates that the NSGA-II produces good performance for reservoir operation problems.
Artificial neural networks (ANNs) have the ability to learn and deal with complex problems and uncertainty issues. In this study, the back-propagation neural network (BPNN) and the adaptive network fuzzy inference system (ANFIS) are used to estimate quarterly water shortage indexes in drought periods for agricultural and public sectors based on the selected input factors and the determined thresholds. The shortage index obtained from the NSGA-II is the training target of the output layers for both ANN models. The results indicate that the BPNN and the ANFIS models have equally good performance in estimating the shortage indexes for both sectors, but the ANFIS model produces better performance in stability. This proposed approach can be used as an early warning system for drought mitigation, which can become a reference guideline for sustainable water resources management.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:34:59Z (GMT). No. of bitstreams: 1
ntu-103-R01622023-1.pdf: 5908169 bytes, checksum: 465422236c6f29c09e9eb267930b794c (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 III
Abstract V
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的 1
1-3 研究架構 2
第二章 文獻回顧 5
2-1 遺傳演算法相關應用 5
2-2 類神經網路相關研究 6
2-3 農業停灌休耕預警相關研究 7
第三章 理論概述 9
3-1 非支配排序遺傳演算法-II (NSGA-II) 9
3-2 類神經網路 11
3-2-1 倒傳遞類神經網路 (BPNN) 15
3-2-2 調適性網路模糊推論系統 (ANFIS) 17
3-3 評估指標 21
第四章 研究案例 24
4-1 研究區域概述 24
4-2 石門水庫操作規線 25
4-3 資料蒐集 27
4-4 水資源調配模式 27
4-5 需水量成長分析 30
第五章 結果與討論 37
5-1 水庫操作分析 37
5-1-1 模擬石門水庫操作序列 (M-5 rules simulation) 38
5-1-2 優選石門水庫最佳操作序列(NSGA-II) 48
5-1-3 模擬及優選模式結果比較 61
5-1-4 優選法調整限制條件結果比較 65
5-2 季長期缺水率推估 67
5-2-1 輸入因子選定及門檻值設定 68
5-2-2 BPNN預測季長期缺水率 70
5-2-3 ANFIS預測季長期缺水率 74
5-2-4 BPNN及ANFIS模式結果比較 81
第六章 結論與建議 82
6-1 結論 82
6-2 建議 84
參考文獻 85
附錄 89
dc.language.isozh-TW
dc.subject類神經網路(ANN)zh_TW
dc.subject非支配排序遺傳演算法-II (NSGA-II)zh_TW
dc.subject倒傳遞類神經網路(BPNN)zh_TW
dc.subject調適性網路模糊推論系統(ANFIS)zh_TW
dc.subject多目標水庫操作zh_TW
dc.subject水資源調配zh_TW
dc.subject水庫操作zh_TW
dc.subjectArtificial neural network (ANN)en
dc.subjectBack-propagation neural network (BPNN)en
dc.subjectAdaptive network fuzzy inference system (ANFIS)en
dc.subjectMulti-objective reservoir operationen
dc.subjectNon-dominated sorting genetic algorithm-II (NSGA-II)en
dc.subjectReservoir operationen
dc.subjectWater allocationen
dc.title智慧型水資源調配策略以因應用水需求成長zh_TW
dc.titleIntelligent Water Resources Allocation Strategy for Growing Water Demandsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃文政(Wen-Cheng Huang),張麗秋(Li-Chiu Chang),陳永祥(Yung-hsiang Chen)
dc.subject.keyword水資源調配,水庫操作,非支配排序遺傳演算法-II (NSGA-II),類神經網路(ANN),倒傳遞類神經網路(BPNN),調適性網路模糊推論系統(ANFIS),多目標水庫操作,zh_TW
dc.subject.keywordWater allocation,Reservoir operation,Non-dominated sorting genetic algorithm-II (NSGA-II),Artificial neural network (ANN),Back-propagation neural network (BPNN),Adaptive network fuzzy inference system (ANFIS),Multi-objective reservoir operation,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2014-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved