請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56559
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張上鎮(Shang-Tzen Chang) | |
dc.contributor.author | Nien-Chih Hsiao | en |
dc.contributor.author | 蕭念之 | zh_TW |
dc.date.accessioned | 2021-06-16T05:34:50Z | - |
dc.date.available | 2019-09-05 | |
dc.date.copyright | 2014-09-05 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-13 | |
dc.identifier.citation | 王松永(1985)商用木材。中華林產事業協會。376頁。
中華民國國家標準(2011)CNS 6717。木材防腐劑之性能基準。經濟部標準檢驗局。 李鴻麟、許富蘭、林勝傑(2004)磷酸與有機胺系藥劑化學處理對木材保存性與尺寸安定性之影響。台灣林業科學19(4):311–321。 張上鎮、王升陽(1995)抗白蟻活性木材抽出成分之探討。林產工業14(2):161–171。 張上鎮、王升陽(1997)臺灣產針闊葉樹材實木散反射傅立葉紅外線光譜特性之比較。中華林學季刊 30(3):329–342。 張上鎮、吳季玲、張惠婷(1999)腐朽菌種對木材腐朽性評估之影響。林產工業18(4):355–362。 張資正(2010)抽出物對木材光劣化的影響。國立臺灣大學森林環境暨資源學系碩士論文。92頁。 American wood protection association (2012) Standard method of determining the leachability of wood preservatives. AWPA E 11-12. US. Abakumov, G. A., A. V. Lobanov, V. K. Cherkasov and G. A. Razuvaev (1981) The synthesis and properties of o-semiquinolate copper complexes. Inorganica Chimica Acta 49(0): 135–138. Baldrian, P. (2003) Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology 32(1): 78–91. Barbehenn, R. V. and P. C. Constabel (2011) Tannins in plant-herbivore interactions. Phytochemistry 72(13): 1551–1565. Bellotti, N., B. del Amo and R. Romagnoli (2012) Tara tannin a natural product with antifouling coating application. Progress in Organic Coatings 74(3): 411–417. Bellotti, N., C. Deyá, B. del Amo and R. Romagnoli (2010) Antifouling paints with zinc “tannate”. Industrial & Engineering Chemistry Research 49(7): 3386–3390. Black, J. (2005) Reactions of biological molecules with biomaterial surfaces. In J. Black, ed. Biological performance of materials: fundamentals of biocompatibility. Taylor & Francis, Boca Raton. pp. 73–84. Bogs, J., M. O. Downey, J. S. Harvey, A. R. Ashton, G. J. Tanner and S. P. Robinson (2005) Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology 139(2): 652–663. Burke, E., N. Slavik, T. Bonura, C. Shake, S. Bureau, D. Connelly, S. L. Cedar, A. Nebelsick and B. Stuart (2010) Understanding extractive bleed. CoatingsTech 7(3): 48–53. Celimene, C. C., J. A. Micales, L. Ferge and R. A. Young (1999) Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung 53(5): 491–497. Chang, H.-T., T.-F. Yeh and S.-T. Chang (2002) Comparisons of chemical characteristic variations for photodegraded softwood and hardwood with/without polyurethane clear coatings. Polymer Degradation and Stability 77(1): 129–135. Chang, S.-T., D. N.-S. Hon and W. Feist (1982) Photodegradation and photoprotection of wood surfaces. Wood and Fiber Science 14(2): 104–117. Chang, S.-T., J.-H. Wu, S.-Y. Wang, P.-L. Kang, N.-S. Yang and L.-F. Shyur (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. Journal of Agricultural and Food Chemistry 49(7): 3420–3424. Chang, T.-C., H.-T. Chang, C.-L. Wu and S.-T. Chang (2010a) Influences of extractives on the photodegradation of wood. Polymer Degradation and Stability 95(4): 516–521. Chang, T.-C., H.-T. Chang, C.-L. Wu, H.-Y. Lin and S.-T. Chang (2010b) Stabilizing effect of extractives on the photo-oxidation of Acacia confusa wood. Polymer Degradation and Stability 95(9): 1518–1522. Chang, T.-C., H.-Y. Lin, S.-Y. Wang and S.-T. Chang (2014) Study on inhibition mechanisms of light-induced wood radicals by Acacia confusa heartwood extracts. Polymer Degradation and Stability 105(0): 42–47. Chen, C. M. (1970) Effect of extractive removal on adhesion and wettability of some tropical woods. Forest Products Journal 20(1): 36–41. Chen, P. S., Y. H. Chen, T. F. Yeh and S. T. Chang (2014) Mechanism of decay resistance of heartwood extracts from Acacia confusa against the brown-rot fungus Laetiporus sulphureus. Wood Science and Technology: 1–15. Chou, C. K., J. A. Chandler and R. D. Preston (1973) Microdistribution of metal elements in wood impregnated with a copper-chrome-arsenic preservative as determined by analytical electron microscopy. Wood Science and Technology 7(2): 151–160. Clausen, C. A. and F. Green (2003) Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives. International Biodeterioration & Biodegradation 51(2): 139–144. Cooper, P. A. and Y. T. Ung (1992) Accelerated fixation of CCA-treated poles. Forest Prodoucts Journal 42(9): 27–32. Cren-Olive, C., P. Hapiot, J. Pinson and C. Rolando (2002) Free radical chemistry of flavan-3-ols: determination of thermodynamic parameters and of kinetic reactivity from short (ns) to long (ms) time scale. Journal of the American Chemical Society 124(47): 14027–14038. Cuajungco, M. P., K. Y. FageT, X. Huang, R. E. Tanzi and A. I. Bush (2000) Metal chelation as a potential therapy for Alzheimer's disease. Annals of the New York Academy of Sciences 920(1): 292–304. Delhaize, E. and P. R. Ryan (1995) Aluminum toxicity and tolerance in plants. Plant Physiology 107(2): 315–321. Diatto, P., M. Martini and G. Spinolo (1988) Far-infrared absorption spectra of Ni, Co and Fe dihalides hydrates. Journal of Physics and Chemistry of Solids 49(12): 1469–1475. Dixon, R. A., D. Y. Xie and S. B. Sharma (2005) Proanthocyanidins–a final frontier in flavonoid research? New Phytologist 165(1): 9–28. Doglia, S. M., M. Martini, G. Spinolo and A. M. Villa (1992) The NIR absorption spectrum of water in FeCl2•4H2O single crystals. Journal of Physics and Chemistry of Solids 53(9): 1237–1243. Dwyer, F. P. (1964) Enzyme-metal ion activation and catalytic phenomena with metal complexes. In F. P. Dwyer and D. P. Mellor, eds. Chelating agents and metal chelates. Academic Press, New York. pp. 335–378. Feist, W., R. Rowell and W. Ellis (1991) Moisture sorption and accelerated weathering of acetylated and methacrylated aspen. Wood and Fiber Science 23(1): 128–136. Feist, W. C. (1977) Wood surface treatments to prevent extractive staining of paints. Forest Products Journal 27(5): 50–54. Feist, W. C. and D. N.-S. Hon (1984) Chemistry of weathering and protection. In R. M. Rowell, ed. The chemistry of solid wood. American Chemical Society, Washington, DC. pp. 401–451. Flemming, C. A. and J. T. Trevors (1989) Copper toxicity and chemistry in the environment: a review. Water, Air, and Soil Pollution 44(1–2): 143–158. Freeman, M. H. and C. R. McIntyre (2008) A comprehensive review of copper-based wood preservatives. Forest Products Journal 58(11): 6-27. Gaballah, I., D. Goy, E. Allain, G. Kilbertus and J. Thauront (1997) Recovery of copper through decontamination of synthetic solutions using modified barks. Metallurgical and Materials Transactions B 28(1): 13–23. Gadd, G. and A. Griffiths (1977) Microorganisms and heavy metal toxicity. Microbial Ecology 4(4): 303–317. Gadd, G. M. (1994) Interactions of fungi with toxic metals. In K. Powell, A. Renwick and J. Peberdy, eds. The Genus Aspergillus. Springer, US. pp. 361–374. Gao, J., B. Zhang and J. Chang (2004) Induced discoloration of buerger maple during drying process. Forestry Studies in China 6(2): 50–55. Hart, J. H. (1989) The role of wood exudates and extractives in protecting wood from decay. In J. W. Rowe, ed. Natural Products of Woody Plants. Springer. pp. 861–880. Haslam, E. (1989) Polyphenols–vegetable tannins. In S. Bowring, ed. Plant polyphenols: vegetable tannins revisited. Cambridge University Press, UK. pp. 1–13. Hemingway, R. W. and G. W. McGraw (1978) Formaldehyde condensation products of model phenols for coniferbark tannins. Journal of Liquid Chromatography 1(2): 163–179. Hillis, W. E. (1985) Biosynthesis of tannins. Academic Press, New York. 696pp. Hillis, W. E. (1996) Formation of robinetin crystals in vessels of Intsia species. IAWA Journal 17: 405–420. Hillis, W. E. and Y. Yazaki (1973) Polyphenols of Intsia heartwoods. Phytochemistry 12(10): 2491–2495. Hiziroglu, S., U. M. K. Anwar, H. Hamdan and P. M. Tahir (2008) Evaluation of surface quality of some Malaysian species as function of outdoor exposure. Journal of Materials Processing Technology 199(1–3): 156–162. Hon, D. N.-S. and S.-T. Chang (1985) Photoprotection of wood surfaces by wood–ion complexes. Wood and Fiber Science 17(1): 92–100. Hon, D. N.-S., S.-T. Chang and W. C. Feist (1982) Participation of singlet oxygen in the photodegradation of wood surfaces. Wood Science and Technology 16(3): 193–201. Hsu, F.-L., P.-S. Chen, H.-T. Chang and S.-T. Chang (2009) Effects of alkyl chain length of gallates on their antifungal property and potency as an environmentally benign preservative against wood-decay fungi. International Biodeterioration & Biodegradation 63(5): 543–547. Hu, C. S., G. F. Jiang, M. Xiao, J. H. Zhou and Z. Yi (2012) Effects of heat treatment on water-soluble extractives and color changes of merbau heartwood. Journal of Wood Science 58(5): 465–469. Hu, C. S., G. F. Jiang, J. H. Zhou, M. Xiao and Z. Yi (2013) Effects of the thickness of the heat-treated wood specimen on water-soluble extractives and mechanical properties of merbau heartwood. BioResources 8(1): 603–611. Humar, M. and B. Lesar (2008) Fungicidal properties of individual components of copper-ethanolamine-based wood preservatives. International Biodeterioration & Biodegradation 62(1): 46–50. Humphrey, D. G. (2002) The chemistry of chromated copper arsenate wood preservatives. Reviews in Inorganic Chemistry 22(1): 1–40. Jackson, F. S., T. N. Barry, C. Lascano and B. Palmer (1996) The extractable and bound condensed tannin content of leaves from tropical tree, shrub and forage legumes. Journal of the Science of Food and Agriculture 71(1): 103–110. Joosten, I., M. R. van Bommel, R. H.-d. Keijzer and H. Reschreiter (2006) Micro analysis on hallstatt textiles: colour and condition. Microchimica Acta 155(1-2): 169–174. Kamdem, D. P., A. Pizzi and A. Jermannaud (2002) Durability of heat-treated wood. Holz als Roh- und Werkstoff 60(1): 1–6. Karamać, M. (2009) Chelation of Cu(II), Zn(II), and Fe(II) by tannin constituents of selected edible nuts. International Journal of Molecular Sciences 10(12): 5485–5497. Katz, S. A. and H. Salem (2005) Chemistry and toxicology of building timbers pressure-treated with chromated copper arsenate: a review. Journal of Applied Toxicology 25(1): 1–7. Kim, S. and H.-J. Kim (2003) Curing behavior and viscoelastic properties of pine and wattle tannin-based adhesives studied by dynamic mechanical thermal analysis and FT-IR-ATR spectroscopy. Journal of Adhesion Science and Technology 17(10): 1369–1383. Kimerling, A. S. and S. R. Bhatia (2004) Block copolymers as low-VOC coatings for wood: characterization and tannin bleed resistance. Progress in Organic Coatings 51(1): 15–26. Koch, G., J. Puls and J. Bauch (2003) Topochemical characterisation of phenolic extractives in discoloured beechwood (Fagus sylvatica L.). Holzforschung 57(4): 339–345. Koch, G., H. G. Richter and U. Schmitt (2006) Topochemical investigation on phenolic deposits in the vessels of afzelia (Afzelia spp.) and merbau (Intsia spp.) heartwood. Holzforschung 60(6): 583–588. Kubel, H. and A. Pizzi (1981) Protection of wood surfaces with metallic oxides. Journal of Wood Chemistry and Technology 1(1): 75–92. Muller, U., M. Ratzsch, M. Schwanninger, M. Steiner and H. Zobl (2003) Yellowing and IR-changes of spruce wood as result of UV-irradiation. Journal of Photochemistry and Photobiology B: Biology 69(2): 97–105. Mannel-Croise, C. and F. Zelder (2012) Complex samples cyanide detection with immobilized corrinoids. ACS Applied Materials & Interfaces 4(2): 725–729. Makris, D. P. and J. T. Rossiter (2000) Heat-induced, metal-catalyzed oxidative degradation of quercetin and rutin (quercetin 3-O-rhamnosylglucoside) in aqueous model systems. Journal of Agricultural and Food Chemistry 48(9): 3830–3838. McDonald, M., I. Mila and A. Scalbert (1996) Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation. Journal of Agricultural and Food Chemistry 44(2): 599–606. McLaren, K. (1976) An introduction to instrumental shade passing and sorting and a review of recent developments. Journal of the Society of Dyers and Colourists 92(9): 317–326. Mellor, D. P. (1964) Historical background and fundamental concepts. In F. P. Dwyer and D. P. Mellor, eds. Chelating agents and metal chelates. Academic Press, New York. pp. 1–48. Mendoza-Wilson, A. M., H. Santacruz-Ortega and R. R. Balandran-Quintana (2011) Spectroscopic and computational study of the major oxidation products formed during the reaction of two quercetin conformers with a free radical. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 81(1): 481–488. Michell, A. J. (1992) FTIR spectroscopic studies of the reactions of wood and of lignin model compounds with inorganic agents. Wood Science and Technology 27(1): 69–80. Mira, L., M. T. Fernandez, M. Santos, R. Rocha, M. H. Florencio and K. R. Jennings (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Research 36(11): 1199–1208. Newman, R. H., L. J. Porter, L. Y. Foo, S. R. Johns and R. I. Willing (1987) High-resolution 13C NMR studies of proanthocyanidin polymers (condensed tannins). Magnetic Resonance in Chemistry 25(2): 118–124. Nzokou, P. and D. P. Kamdem (2006) Influence of wood extractives on the photo-discoloration of wood surfaces exposed to artificial weathering. Color Research & Application 31(5): 425–434. Ogata, T., S. Morisada, Y. Oinuma, Y. Seida and Y. Nakano (2011) Preparation of adsorbent for phosphate recovery from aqueous solutions based on condensed tannin gel. Journal of Hazardous Materials 192(2): 698–703. Oo, C. W., M. J. Kassim and A. Pizzi (2009) Characterization and performance of Rhizophora apiculata mangrove polyflavonoid tannins in the adsorption of copper (II) and lead (II). Industrial Crops and Products 30(1): 152–161. Ozacar, M., C. Soykan and İ. A. Şengi̇l (2006) Studies on synthesis, characterization, and metal adsorption of mimosa and valonia tannin resins. Journal of Applied Polymer Science 102(1): 786–797. Pal, S., J. M. Bollag and P. M. Huang (1994) Role of abiotic and biotic catalysts in the transformation of phenolic compounds through oxidative coupling reactions. Soil Biology and Biochemistry 26(7): 813–820. Palma, G., J. Freer and J. Baeza (2003) Removal of metal ions by modified Pinus radiata bark and tannins from water solutions. Water Research 37(20): 4974–4980. Pandey, K. K. (2005) A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer Degradation and Stability 87(2): 375–379. Pizzi, A. (1979) Phenolic and tannin-based adhesive resins by reactions of coordinated metal ligands. I. Phenolic chelates. Journal of Applied Polymer Science 24(5): 1247–1255. Pizzi, A. (2003) Natural phenolic adhesives I: Tannin. In A. Pizzi and K. L. Mittal, eds. Handbook of Adhesive Technology. CRC Press, Dekker, New York. pp. 573–587. Pizzi, A., W. E. Conradie and A. Jansen (1986) Polyflavonoid tannins–a main cause of soft-rot failure in CCA-treated timber. Wood Science and Technology 20(1): 71–81. Pizzi, A. and A. Stephanou (1994) A 13C NMR study of polyflavonoid tannin adhesive intermediates. II. colloidal state reactions. Journal of Applied Polymer Science 51(13): 2125–2130. Ramirez, M., H. Ruiz, F. Arzate, M. Gallegos and S. Enriquez (2012) Evaluation of fungi toxic activity of tannins and a tannin-copper complex from the mesocarp of Cocos Nucifera Linn. Wood and Fiber Science 44(4): 357–364. Randall, J. M. (1977) Variations in effectiveness of barks as scavengers for heavy metal ions. Forest Products Journal 27: 51–56. Reddy, B. R., N. Mirghaffari and I. Gaballah (1997) Removal and recycling of copper from aqueous solutions using treated Indian barks. Resources, Conservation and Recycling 21(4): 227–245. Ripley-Duggan, B. A. (1952) Retention by wood of copper and zinc from aqueous solutions of their salts. Journal of Applied Chemistry 2(10): 593–600. Roux, D. G., D. Ferreira, H. K. L. Hundt and E. Malan (1975) Structure, stereochemistry, and reactivity of natural condensed tannins as basis for their extended industrial application. In T. E. Timell, ed. Proceedings of the Eighth Cellulose Conference I. Wood Chemicals– A Future Challenge. Applied Polymer Symposia DTIC Document, New York. pp. 335–353. Ryan, P. R., J. E. Shaff and L. V. Kochian (1992) Aluminum toxicity in roots: correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars. Plant Physiology 99(3): 1193–1200. Said, I. (2004) Beauty of material: selecting timber species for Malay woodcarving. Jurnal Alam Bina 6(1): 45–54. Samanta, A. K. and P. Agarwal (2009) Application of natural dyes on textiles. Indian Journal of Fibre & Textile Research 34: 384–399. Santos, J. A. (2000) Mechanical behaviour of Eucalyptus wood modified by heat. Wood Science and Technology 34(1): 39–43. Scalbert, A. (1991) Antimicrobial properties of tannins. Phytochemistry 30(12): 3875–3883. Scheffer, T. C. and E. B. Cowling (1966) Natural resistance of wood to microbial deterioration. Annual Review of Phytopathology 4(1): 147–168. Schultz, T. P. and D. D. Nicholas (2000) Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry 54(1): 47–52. Seki, K., N. Saito and M. Aoyama (1997) Removal of heavy metal ions from solutions by coniferous barks. Wood Science and Technology 31(6): 441–447. Septhum, C., V. Rattanaphani and S. Rattanaphani (2007) UV-Vis spectroscopic study of natural dyes with alum as a mordant. Suranaree Journal Science Technology 14(1): 91–97. Slabbert, N. (1992) Complexation of condensed tannins with metal ions. In R. W. Hemingway and P. E. Laks, eds. Plant polyphenols: synthesis, properties, significance. Springer, US. pp. 437–447. Soto, R., J. Freer and J. Baeza (2005) Evidence of chemical reactions between di- and poly-glycidyl ether resins and tannins isolated from Pinus radiata D. Don bark. Bioresource Technology 96(1): 95–101. Stephenson, R. J. and S. J. B. Duff (1996) Coagulation and precipitation of a mechanical pulping effluent–II. Toxicity removal and metal salt recovery. Water Research 30(4): 793–798. Stirling, R. and P. I. Morris (2010) Reducing depletion of western redcedar extractives from wood in service. A Tale of Two Cedars: International Symposium on Western Redcedar and Yellow-Cedar. May 24–28. Vancouver, Canada. pp. 87–92. Stirling, R. and P. I. Morris (2012) Treatments to minimize extractives stain in western red cedar. BioResources 7(2): 2461–2468. Stirling, R., B. Morse and P. Morris (2006) The effects of variousse coatings on western redcedar extractive retention. Proceedings of the 27th Annual Meeting of the Canadian Wood Preservation Association. November 7–8. Vancouver, Canada. pp. 143–156. Stumm, W. (1995) The inner-sphere surface complex: a key to understanding surface reactivity. ACS Advances in Chemeistry Series 244: 1–32. Su, C. and R. W. Puls (2004) Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environmental Science & Technology 38(9): 2715–2720. Tanaka, H., J. Henning, H. D. Lutz and G. Kliche (1987) Infrared and Raman spectra of CuCl2•2(H,D)2O and K2CuCl4•2(H,D)2O. Vibrational modes, assignment and coupling of the water librations. Spectrochimica Acta Part A: Molecular Spectroscopy 43(3): 395–400. Temiz, A., N. Terziev, M. Eikenes and J. Hafren (2007) Effect of accelerated weathering on surface chemistry of modified wood. Applied Surface Science 253(12): 5355–5362. Temiz, A., U. C. Yildiz, I. Aydin, M. Eikenes, G. Alfredsen and G. Colakoglu (2005) Surface roughness and color characteristics of wood treated with preservatives after accelerated weathering test. Applied Surface Science 250(1–4): 35–42. Thaman, R. R., L. J. Thomson, R. DeMeo, R. Arekit and C. R. Elevitch (2011) Intsia bijuga (vesi). Permanent Agriculture Resources, Hawaii. 800pp. Thompson, D. and A. Pizzi (1995) Simple 13C-NMR methods for quantitative determinations of polyflavonoid tannin characteristics. Journal of Applied Polymer Science 55(1): 107–112. Tolvaj, L. and K. Mitsui (2005) Light source dependence of the photodegradation of wood. Journal of Wood Science 51(5): 468–473. Tondi, G., S. Wieland, N. Lemenager, A. Petutschnigg, A. Pizzi and M.-F. Thevenon (2012) Efficacy of tannin in fixing boron in wood: fungal and termite resistance. BioResources 7(1): 1238–1252. Tong, P. S., H. K. Chen, J. Hewitt and A. Affre (2009) Review of trade in merbau from major range states. TRFFIC Southest Asia, Petaling Jaya, Selangor, Malaysia. 46pp. Varga, D. and M. E. van der Zee (2008) Influence of steaming on selected wood properties of four hardwood species. Holz als Roh- und Werkstoff 66(1): 11–18. Velioglu, Y. S., G. Mazza, L. Gao and B. D. Oomah (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry 46(10): 4113–4117. Verbist, J. J., W. C. Hamilton, T. F. Koetzle and M. S. Lehmann (1972) Neutron diffraction study of iron(II) chloride tetrahydrate, FeCl2• 4H2O. The Journal of Chemical Physics 56(7): 3257–3264. Walton, J. R. (2013) Aluminum's involvement in the progression of Alzheimer's disease. J Alzheimers Dis 35(4): 875–875. Wan Ngah, W. S. and M. A. K. M. Hanafiah (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology 99(10): 3935–3948. Wang, L. K., N. C. Pereira and Y. T. Hung (2005) Chemical precipitation. In L. K. Wang, Y. T. Hung and N. K. Shammas, eds. Handbook of Environmental Engineering: Physicochemical treatment processes. Humana Press. pp. 141–174. Xia, N. and M. Taillefer (2008) Copper- or iron-catalyzed arylation of phenols from respectively aryl chlorides and aryl iodides. Chemistry–A European Journal 14(20): 6037–6039. Yamamoto, K. and L. T. Hong (1989) Location of extractives and decay resistance in some Malaysian hardwood species. Journal of Tropical Forest Science 2(1): 61–70. Yazaki, Y., P. Collins and B. McCombe (1994) Variations in hot water extractives content and density of commercial wood veneers from blackbutt (Eucalyptus pilularis). Holzforschung 48(suppl.): 107–111. Yildiz, S., E. D. Gezer and U. C. Yildiz (2006) Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment 41(12): 1762–1766. Yoneda, S. and F. Nakatsubo (1998) Effects of the hydroxylation patterns and degrees of polymerization of condensed tannins on their metal-chelating capacity. Journal of Wood Chemistry and Technology 18(2): 193–205. Zhang, J. and D. Kamdem (2000) Interaction of copper-amine with southern pine: retention and migration. Wood and Fiber Science 32(3): 332–339. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56559 | - |
dc.description.abstract | 本研究為了解決太平洋鐵木(Intsia palembanica)心材利用時深紅色水溶性抽出物易釋出而污染環境的問題,乃將太平洋鐵木心材於常溫低壓下含浸不同的金屬離子,使金屬離子與水溶性抽出物反應形成穩定的螯合物。試驗結果顯示,FeCl2及CuCl2能抑制水溶性抽出物釋出之效果最佳,且100°C乾燥溫度可增強處理材之抗流失性,又以CuCl2改善效果最為顯著。0.1% FeCl2及CuCl2處理材於100°C加熱後,材色分別為黑褐色及紅褐色,由16-day淋洗試驗之結果得知,試材重量損失率由未處理材的13.2%分別降為1.6%及1.7%,且藥劑固著性佳,實為有效抑制太平洋鐵木心材水溶性抽出物釋出且環境較友善之方法。
以核磁共振光譜儀分析太平洋鐵木心材水溶性抽出物得知,其主要由縮合單寧所組成,且B環上含鄰二羥基,此為抽出物與金屬離子反應之關鍵結構。另使用紅外線光譜儀分析水溶性抽出物與FeCl2或CuCl2之反應物得知,於室溫下Fe離子與抽出物反應較強,可形成大量水不溶之螯合物,而加熱則會促進Cu離子氧化抽出物,形成半鄰醌類及鄰醌類化合物,進而增加Cu離子與抽出物之螯合反應;另由0.1% FeCl2及CuCl2處理材之紅外光光譜得知,金屬離子主要與抽出物反應。 進一步評估0.1% FeCl2及CuCl2處理材之耐光性、耐腐朽性及尺寸安定性得知,水溶性抽出物可緩和太平洋鐵木心材木質素之光劣化,故0.1% FeCl2及CuCl2處理材具有優異之耐光性,照光後材色變化較小;另外,移除水溶性抽出物雖然不會影響其耐腐朽性質,但水溶性抽出物可加強CuCl2之固著,進而抑制腐朽菌的降解;0.1% FeCl2及CuCl2處理材之表面較具疏水性,於高溼環境下平衡含水率較低,且體積膨脹較緩慢。因此,0.1% FeCl2及CuCl2之處理除了能有效抑制太平洋鐵木心材水溶性抽出物釋出之外,亦可延長太平洋鐵木心材產品於戶外應用之生命週期,且不會污染環境。 | zh_TW |
dc.description.abstract | The dark-red aqueous extracts (AEs) of merbau (Intsia palembanica) heartwoods would be easily leached out and cause a contaminant in the adjacent areas. The main purpose of this study was to exploit appropriate treatments to avoid the environmental impact of AEs leaching. Several metal compounds were impregnated into merbau heartwoods at ambient temperature under vacuum. The AEs can act as chelators and form stable and water-insoluble complexes with metal ions, thereby solving the extract-stain problems of merbau heartwoods. The results revealed that FeCl2 and CuCl2 are effective reagents for inhibiting the release of AEs. In addition, drying at 100°C could increase the bleed resistance of treated wood, especially in the CuCl2 case. The appearances of 0.1% FeCl2- and CuCl2-treated woods dried at 100°C were dark-brown and red-brown, respectively. Their weight losses were only 1.6% and 1.7%, respectively, compared to 13.2% for untreated wood after 16-day leaching test. These two treatments also have good fixation of metals, and consequently are relatively environmentally-benign and efficient approaches to inhibiting the release AEs of merbau heartwood.
Results from nuclear magnetic resonance spectra revealed that AEs were mainly composed of condensed tannins with an o-dihydroxyl group in the B ring, which was an indispensable group to complex metal ion. Infrared spectroscopy was further employed to analyze the products after AEs reacted with FeCl2 or CuCl2 in water. The results implied that FeCl2 had stronger reactivity to the AEs than that of CuCl2 at ambient temperature; on the other hand, CuCl2 could catalyze the AEs to form quinones or o-semiquinones by means of heat, and consequently induced the chelating reaction between the quinones and copper ion. Besides, the IR spectra of 0.1% FeCl2- and CuCl2-treated woods revealed that the majority of metal ions reacts with extracts. Furthermore, the durability of 0.1% FeCl2- and CuCl2-treated woods was also examined in this study. Results from lightfastness test demonstrated that AEs present in merbau heartwood can prevent the photodegradation of lignin and be slight color changes of treated specimens after irradiation. Even though removing AEs was no effect on the durability of merbau heartwood, the copper ion was still fixed within specimens by AEs, and consequently their resistance against decay fungi were enhanced. Moreover, 0.1% FeCl2- and CuCl2-treated specimens with hydrophobic surfaces have the lower equilibrium moisture content and slower swelling than unrtreated. Therefore, merbau heartwood treated with 0.1% FeCl2 and CuCl2 can solve the AEs leacing problem by environmentally-benign way, meanwhile provide longer product life cycle of merbau heartwood for exterior applications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:34:50Z (GMT). No. of bitstreams: 1 ntu-103-R00625035-1.pdf: 2922193 bytes, checksum: c2b3c466ea042165ff31ec8dbd8541e9 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目 錄 I
表目錄 V 圖目錄 VII 摘 要 XIII Abstract XIV 壹、前言 1 貳、文獻回顧 3 一、太平鐵木之簡介 3 (一)種類及分布 3 (二)商業利用 3 (三)抽出物相關研究 4 1. 成分分析 4 2. 材色 8 3. 耐久性 8 4. 光安定性質 9 二、減少水溶性抽出物釋出之方法 11 (一)表面塗裝 11 (二)熱處理 11 (三)含浸化學藥劑 12 三、植物抽出物之金屬螯合能力及其應用 12 (一)金屬螯合物 12 (二)植物抽出物之螯合能力 14 (三)酚類化合物金屬螯合能力之應用 15 四、金屬離子藥劑處理材之性質變化 17 (一)外觀顏色 17 (二)耐久性 19 (三)光安定性質 21 參、材料與方法 24 一、試驗材料 24 (一)太平洋鐵木心材 24 (二)塗料 24 (三)金屬離子藥劑 24 (四)木材腐朽菌 25 (五)培養基 25 二、試驗方法 25 (一)塗裝處理 25 (二)含浸處理 25 (三)處理材性質測定 26 1. 表面顏色變化分析 26 2. 散反射式紅外線光譜分析 27 3. 接觸角分析 27 4. 處理效果評估-48-h浸水試驗 27 (四)太平洋鐵木心材抽出物分析 28 1. 抽出物萃取 28 (1)水溶性抽出物 28 (2)抽出物 28 2. 紫外光-可見光光譜分析 28 3. 聚酚類分析 28 (1)總酚類含量 28 (2)總黃酮類含量 29 (3)縮合單寧含量 29 4. 清除DPPH自由基活性 30 5. 分子量測定 30 6. 金屬-水溶性抽出物螯合物製備 31 (1)水溶液分析 31 (2)水可溶物及沉澱物散反射式(DRIFT)紅外線掃描分析 32 (五)耐腐朽性試驗 32 1. 固態瓊脂平板試驗 32 2. 木材加速耐腐朽試驗 33 (六)耐候性試驗 33 1. 尺寸安定性 33 2. 16-day淋洗試驗 34 3. 加速耐光性試驗 34 (七)統計分析 34 肆、結果與討論 35 一、抑制太平洋鐵木心材水溶性抽出物之釋出 35 (一)表面塗裝 35 (二)含浸金屬離子藥劑 36 二、FeCl2及CuCl2藥劑處理條件之探討 39 (一)FeCl2或CuCl2抑制太平洋鐵木心材水溶性抽出物釋出之效果 39 (二)乾燥溫度對FeCl2及CuCl2抑制太平洋鐵木心材水溶性抽出物釋出之影響 40 (三) FeCl2或CuCl2處理材16-day淋洗試驗 41 (四)FeCl2或CuCl2處理材之金屬離子固著性 43 (五)FeCl2或CuCl2處理材之材色變化 45 三、FeCl2及CuCl2藥劑抑制太平洋鐵木心材水溶性抽出物釋出之機制探討 47 (一)太平洋鐵木心材水溶性抽出物之13C-NMR解析 47 (二)太平洋鐵木心材水溶性抽出物與FeCl2或CuCl2之反應性 50 (三)太平洋鐵木心材水溶性抽出物與FeCl2或CuCl2反應後之化學結構變化 54 四、FeCl2及CuCl2處理材之散反射式傅立葉轉換紅外光光譜解析 64 五、FeCl2及CuCl2處理材之耐久性 67 (一)耐光性 67 1. FeCl2及CuCl2處理材照光後之化學官能基變化 67 2. 太平洋鐵木各種試材照光後之材色變化 75 (二)尺寸安定性 78 (三)耐腐朽性 81 伍、結論 86 陸、參考文獻 87 | |
dc.language.iso | zh-TW | |
dc.title | 改善太平洋鐵木心材水溶性抽出物釋出之方法及其處理材之耐久性 | zh_TW |
dc.title | Treatments for Improving the Release of Aqueous Extracts from Merbau (Intsia palembanica) Heartwoods and the Durability of Treated Wood | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李文昭(Wen-Jau Lee),王升陽(Sheng-Yang Wang),許富蘭(Fu-Lan Hsu),葉汀峰(Ting-Feng Yeh) | |
dc.subject.keyword | 水溶性抽出物,抗流失性,氯化銅,抽出物染色,氯化亞鐵,太平洋鐵木,金屬螯合, | zh_TW |
dc.subject.keyword | Aqueous extracts,Bleed resistance,Copper chloride,Extract-stain,Ferrous chloride,Intsia palembanica,Metal chelation, | en |
dc.relation.page | 100 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。