Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56539Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 孫志鴻(Chih-Hung Sun) | |
| dc.contributor.author | Tzu-Chun Lin | en |
| dc.contributor.author | 林子鈞 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:33:45Z | - |
| dc.date.available | 2020-08-03 | |
| dc.date.copyright | 2020-08-03 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-28 | |
| dc.identifier.citation | Chen, E., Ye, Z., Wang, C., Xu, M. (2019). Subway Passenger Flow Prediction for Special Events Using Smart Card Data. IEEE Transactions on Intelligent Transportation Systems. Chollet, F. (2015). Keras Documentation. from https://keras.io/ Chollet, F. (2018). Deep Learning with Python (C. Taylor Ed.). New York: Manning Publications Co. Dan. (2019). Tensorflow 介紹 及 Tensorflow 2.0相關知識. from https://ithelp.ithome.com.tw/articles/10215969 Ding, C., Wang, D., Ma, X., Li, H. (2016). Predicting short-term subway ridership and prioritizing its influential factors using gradient boosting decision trees. Sustainability, 8(11), 1100. Gers, F. A., Schmidhuber, J., Cummins, F. (1999). Learning to forget: Continual prediction with LSTM. Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. Karlaftis, M. G., Vlahogianni, E. I. J. T. R. P. C. E. T. (2011). Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. 19(3), 387-399. Khashei, M., Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11(2), 2664-2675. doi: 10.1016/j.asoc.2010.10.015 Kwang-Ho, K., Hyoung-Sun, Y., Yong-Cheol, K. (2000). Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method. IEEE Transactions on Power Systems, 15(2), 559-565. doi: 10.1109/59.867141 López, M., Sans, C., Valero, S., Senabre, C. J. E. (2018). Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting. 11(8), 2080. LeCun, Y., Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10), 1995. Li, Y., Wang, X., Sun, S., Ma, X., Lu, G. (2017). Forecasting short-term subway passenger flow under special events scenarios using multiscale radial basis function networks. 77, 306-328. Liu, L., Chen, R.-C. (2017). A novel passenger flow prediction model using deep learning methods. 84, 74-91. Liu, Y., Lai, X., Chang, G.-L. (2006). Two-Level Integrated Optimization System for Planning of Emergency Evacuation. 132(10), 800-807. Michalski, R. S., Carbonell, J. G., Mitchell, T. M. (2013). Machine learning: An artificial intelligence approach: Springer Science Business Media. Ng, A. (2016). What does Andrew Ng think about Deep Learning? , from https://www.quora.com/What-does-Andrew-Ng-think-about-Deep-Learning Nguyen, H., Kieu, L.-M., Wen, T., Cai, C. (2018). Deep learning methods in transportation domain: a review. IET Intelligent Transport Systems, 12(9), 998-1004. doi: 10.1049/iet-its.2018.0064 Pereira, F. C., Rodrigues, F., Ben-Akiva, M. (2015). Using data from the web to predict public transport arrivals under special events scenarios. Journal of Intelligent Transportation Systems, 19(3), 273-288. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. J. T. J. o. M. L. R. (2014). Dropout: a simple way to prevent neural networks from overfitting. 15(1), 1929-1958. Xavier, A. (2019). An introduction to ConvLSTM. from https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7 Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., Woo, W.-c. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Paper presented at the Advances in neural information processing systems. Zhang, J., Zheng, Y., Qi, D. (2017). Deep spatio-temporal residual networks for citywide crowd flows prediction. Paper presented at the Thirty-First AAAI Conference on Artificial Intelligence. 马晓磊, 张., 丁川,刘剑锋. (2017). China Patent No. 北京航空航天大学. 台北大眾捷運股份有限公司. (2010). 使命與願景. from https://web.archive.org/web/20120326134542/http://www.trtc.com.tw/ct.asp?xItem=1315925 CtNode=24529 mp=122031 呂佩容. (2012). 特殊活動之運輸需求行為分析-以台北小巨蛋演唱會為例. 中原大學土木工程研究所學位論文, 1-120. 周汶叡, 柯召璇, 李思葦, 陳譽晏, 李宗益. (2018). 第4代臺北都會區運輸需求預測模式更新版(TRTS-4S)成果. 捷運技術, 53. 林泉亨. (2015). 基於社群網路資料之捷運運量預測 MRT Demand Prediction through Social Media. Retrieved from http://ntur.lib.ntu.edu.tw/handle/246246/277956 林炫洋. (1982). 台北市中運量捷運系統運量預測模式之研究. (碩士), 國立交通大學. Retrieved from http://hdl.handle.net/11536/51636 林誌銘, 王晉元. (2008). 應用基因演算法於捷運列車運行計畫之研究. 邱莉玲. (2015). 電子票證鏖戰 一卡通揮軍北上. 工商時報. Retrieved from https://www.chinatimes.com/newspapers/20150901000065-260202?fbclid=IwAR2k9SvS8jNBPU9r4YxDDN7maRa_eQoqr1t1CGIMu4YmYnVBJFRM2fCbzds chdtv 黃志偉. (2015). 運用人工神經網路探討短期高雄捷運班次之運能. 成功大學. Available from Airiti AiritiLibrary database. (2015年) 臺北大眾捷運股份有限公司. (2008). 從營運公司觀點介紹臺北捷運運量推估方式. 軌道經營與管理, 3. 臺北大眾捷運股份有限公司. (2014). 文湖線加車啟動機制 – 以臺北小巨蛋為例. 軌道經營與管理, 14. 臺北市大型路外活動交通維持作業辦法 (2009). 蔡宗憲. (2006). 類神經網路模式於短期列車旅運量需求預測之應用. 成功大學. Available from Airiti AiritiLibrary database. (2006年) 蔡宗憲, 李治綱, 魏健宏. (2006). 短期列車旅運需求之類神經網路預測模式建構與評估. [Artificial Neural Networks for Short-Term Railway Passenger Demand Forecasting]. 35(4), 475-505. doi: 10.6402/tpj.200611.0475 魏健宏, 陳奕志. (2001). 類神經網路模式在國內交通運輸研究之成果評析. 運輸計劃季刊, 30(2), 323-347. 蘇怡瑄. (2009). 運用類神經網路預測捷運車站之運量. 國立交通大學. Retrieved from http://140.113.39.130/cdrfb3/record/nctu/#GT079736519 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56539 | - |
| dc.description.abstract | 可靠且精準的捷運運量預測對於乘客、捷運公司是非常重要且必要的,特別是當大型活動在城市中舉辦,使參加者在短時間內從城市中往活動舉辦地集中,參加者大多使用大眾運輸作為主要的交通方式,且因為大型活動的特性以及場館區位的特性,參加者到場與離場往往與平日運量相比,在時間上較為集中以及人數也較多,對於乘客的搭乘體驗、列車調度或是場站管理都有可能產生負面的影響。近年資料科學逐漸應用於人類生活中各個領域中,其中在交通預測中因為智慧卡交易時產生大量且複雜的數據,這些資料中隱含了空間與時間的特性。因此本研究欲利用深度學習的方法,以捷運悠遊卡的進出站刷卡資料,透過深度學習的方法,捕捉並預測臺北捷運在不同的日型態以及大型活動時的運量特徵,希望能提供捷運公司管理單位作為場站管理以及行車調度之參考,減輕大型活動的人潮對於大眾運輸系統的衝擊。 | zh_TW |
| dc.description.abstract | Reliable and precision ridership forecasting is very important and essential to the passenger and the subway operator. Especially, when large events held in the urban area, the participants concentrated to the event venue in a short time, and most of participants would choose public transit as the main way arriving the venue. Because of the characteristics of large special events and the location of the venues, participants are often more concentrated and more numbers than on weekdays. Therefore, for passengers' ride experience, train scheduling and station management will have a negative impact. In recent years, data science has accordingly applied in many aspects of our daily life. In transit demand forecasting domain, because of the smart cards generated large volume and complex data, furthermore spatial and temporal characteristics are implied in these data. Therefore, this thesis intends to use the method of deep learning to predict the passenger demand of whole Taipei Metro system, in order to capture the feature under different day types and large-scale activities in Taipei Metro system through deep learning method. The prediction model are designed to provide decision-making assistance for MRT company management department and as a reference for station management to mitigate the impact of large special events on the mass transit system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:33:45Z (GMT). No. of bitstreams: 1 U0001-2507202023173800.pdf: 4217779 bytes, checksum: 31a74f00c0d365fd0e19f8362c56ac94 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究目的 5 第二章 文獻回顧 6 2.1 臺北捷運運量預測回顧 6 2.2 臺北市大型活動發展回顧 9 2.3 運量預測方法回顧 10 2.4 短期交通預測研究回顧 12 2.5 ConvLSTM演算法與模型 19 2.6 小結 22 第三章 研究方法 23 3.1 研究流程 23 3.2 研究範圍 24 3.3 資料說明 25 3.4 分析流程 27 3.5 預測結果驗證 32 3.6 研究限制 34 第四章 資料集製作與模型搭建 35 4.1 Pandas資料預處理 35 4.2 搭建訓練模型 48 第五章 研究成果與討論 51 1. ConvLSTM運量預測 51 2. 預測結果分析與討論 54 第六章 結論與建議 69 6.1 結論 69 6.2 建議 70 參考文獻 71 附錄一 運量資料預處理程式碼 75 附錄二 運量預測程式碼 86 附錄三 資料驗證程式碼 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 捷運運量預測 | zh_TW |
| dc.subject | 大數據 | zh_TW |
| dc.subject | 悠遊卡 | zh_TW |
| dc.subject | 特殊活動 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 時空分析 | zh_TW |
| dc.subject | Spatiotemporal Analysis | en |
| dc.subject | Big Data | en |
| dc.subject | EasyCard | en |
| dc.subject | Special Events | en |
| dc.subject | Deep Learning | en |
| dc.subject | Transit Demand Forecasting | en |
| dc.title | 以深度學習方法預測大型活動對臺北捷運運量之影響 | zh_TW |
| dc.title | Forecasting Passenger Demand for Large Special Events in Taipei Transit System Using Deep Learning Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡博文(Po-Wen Tsai),周學政(Hsueh-Cheng Chou) | |
| dc.subject.keyword | 捷運運量預測,大數據,悠遊卡,特殊活動,深度學習,時空分析, | zh_TW |
| dc.subject.keyword | Transit Demand Forecasting,Big Data,EasyCard,Special Events,Deep Learning,Spatiotemporal Analysis, | en |
| dc.relation.page | 112 | |
| dc.identifier.doi | 10.6342/NTU202001855 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
| Appears in Collections: | 地理環境資源學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-2507202023173800.pdf Restricted Access | 4.12 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
