請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56536
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄧述諄(Shu-Chun Teng) | |
dc.contributor.author | Yi-Ting Chen | en |
dc.contributor.author | 陳伊婷 | zh_TW |
dc.date.accessioned | 2021-06-16T05:33:36Z | - |
dc.date.available | 2020-08-13 | |
dc.date.copyright | 2014-10-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-13 | |
dc.identifier.citation | Agarwal, S., Loh, Y.H., McLoughlin, E.M., Huang, J., Park, I.H., Miller, J.D., Huo, H., Okuka, M., Dos Reis, R.M., Loewer, S., et al. (2010). Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464, 292-296.
Armstrong, L., Saretzki, G., Peters, H., Wappler, I., Evans, J., Hole, N., von Zglinicki, T., and Lako, M. (2005). Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem cells 23, 516-529. Batista, L.F., Pech, M.F., Zhong, F.L., Nguyen, H.N., Xie, K.T., Zaug, A.J., Crary, S.M., Choi, J., Sebastiano, V., Cherry, A., et al. (2011). Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474, 399-402. Bianchi, F., Hu, J., Pelosi, G., Cirincione, R., Ferguson, M., Ratcliffe, C., Di Fiore, P.P., Gatter, K., Pezzella, F., and Pastorino, U. (2004). Lung cancers detected by screening with spiral computed tomography have a malignant phenotype when analyzed by cDNA microarray. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 6023-6028. Bruce, S.J., Gardiner, B.B., Burke, L.J., Gongora, M.M., Grimmond, S.M., and Perkins, A.C. (2007). Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeBMP4 culture. BMC genomics 8, 365. Chang, W.J., and Alvarez-Gonzalez, R. (2001). The sequence-specific DNA binding of NF-kappa B is reversibly regulated by the automodification reaction of poly (ADP-ribose) polymerase 1. The Journal of biological chemistry 276, 47664-47670. Chiou, S.H., Jiang, B.H., Yu, Y.L., Chou, S.J., Tsai, P.H., Chang, W.C., Chen, L.K., Chen, L.H., Chien, Y., and Chiou, G.Y. (2013). Poly(ADP-ribose) polymerase 1 regulates nuclear reprogramming and promotes iPSC generation without c-Myc. The Journal of experimental medicine 210, 85-98. Doege, C.A., Inoue, K., Yamashita, T., Rhee, D.B., Travis, S., Fujita, R., Guarnieri, P., Bhagat, G., Vanti, W.B., Shih, A., et al. (2012). Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488, 652-655. Evans, P.M., and Liu, C. (2008). Roles of Krupel-like factor 4 in normal homeostasis, cancer and stem cells. Acta biochimica et biophysica Sinica 40, 554-564. Foster, K.W., Liu, Z., Nail, C.D., Li, X., Fitzgerald, T.J., Bailey, S.K., Frost, A.R., Louro, I.D., Townes, T.M., Paterson, A.J., et al. (2005). Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene 24, 1491-1500. Foster, K.W., Ren, S., Louro, I.D., Lobo-Ruppert, S.M., McKie-Bell, P., Grizzle, W., Hayes, M.R., Broker, T.R., Chow, L.T., and Ruppert, J.M. (1999). Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 10, 423-434. Gao, F., Kwon, S.W., Zhao, Y., and Jin, Y. (2009). PARP1 poly(ADP-ribosyl)ates Sox2 to control Sox2 protein levels and FGF4 expression during embryonic stem cell differentiation. The Journal of biological chemistry 284, 22263-22273. Ghaleb, A.M., McConnell, B.B., Nandan, M.O., Katz, J.P., Kaestner, K.H., and Yang, V.W. (2007). Haploinsufficiency of Kruppel-like factor 4 promotes adenomatous polyposis coli dependent intestinal tumorigenesis. Cancer research 67, 7147-7154. Greider, C.W., and Blackburn, E.H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405-413. Gunes, C., and Rudolph, K.L. (2013). The role of telomeres in stem cells and cancer. Cell 152, 390-393. Hoffmeyer, K., Raggioli, A., Rudloff, S., Anton, R., Hierholzer, A., Del Valle, I., Hein, K., Vogt, R., and Kemler, R. (2012). Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336, 1549-1554. Ju, B.G., Solum, D., Song, E.J., Lee, K.J., Rose, D.W., Glass, C.K., and Rosenfeld, M.G. (2004). Activating the PARP-1 sensor component of the groucho/ TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway. Cell 119, 815-829. Kim, M.Y., Zhang, T., and Kraus, W.L. (2005). Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes & development 19, 1951-1967. Kraus, W.L., and Lis, J.T. (2003). PARP goes transcription. Cell 113, 677-683. Lai, J.S., and Herr, W. (1992). Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proceedings of the National Academy of Sciences of the United States of America 89, 6958-6962. Li, Y., McClintick, J., Zhong, L., Edenberg, H.J., Yoder, M.C., and Chan, R.J. (2005). Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood 105, 635-637. Lindahl, T., Satoh, M.S., Poirier, G.G., and Klungland, A. (1995). Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends in biochemical sciences 20, 405-411. Luo, A., Kong, J., Hu, G., Liew, C.C., Xiong, M., Wang, X., Ji, J., Wang, T., Zhi, H., Wu, M., et al. (2004). Discovery of Ca2+-relevant and differentiation-associated genes downregulated in esophageal squamous cell carcinoma using cDNA microarray. Oncogene 23, 1291-1299. Marion, R.M., Strati, K., Li, H., Tejera, A., Schoeftner, S., Ortega, S., Serrano, M., and Blasco, M.A. (2009). Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell stem cell 4, 141-154. McEachern, M.J., Krauskopf, A., and Blackburn, E.H. (2000). Telomeres and their control. Annual review of genetics 34, 331-358. Miura, T., Mattson, M.P., and Rao, M.S. (2004). Cellular lifespan and senescence signaling in embryonic stem cells. Aging cell 3, 333-343. Ohnishi, S., Ohnami, S., Laub, F., Aoki, K., Suzuki, K., Kanai, Y., Haga, K., Asaka, M., Ramirez, F., and Yoshida, T. (2003). Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochemical and biophysical research communications 308, 251-256. Pandya, A.Y., Talley, L.I., Frost, A.R., Fitzgerald, T.J., Trivedi, V., Chakravarthy, M., Chhieng, D.C., Grizzle, W.E., Engler, J.A., Krontiras, H., et al. (2004). Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 2709-2719. Pucci, F., Gardano, L., and Harrington, L. (2013). Short telomeres in ESCs lead to unstable differentiation. Cell stem cell 12, 479-486. Shay, J.W., and Wright, W.E. (2006). Telomerase therapeutics for cancer: challenges and new directions. Nature reviews Drug discovery 5, 577-584. Sokol, S.Y. (2011). Maintaining embryonic stem cell pluripotency with Wnt signaling. Development (Cambridge, England) 138, 4341-4350. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. Tetreault, M.P., Yang, Y., and Katz, J.P. (2013). Kruppel-like factors in cancer. Nature reviews Cancer 13, 701-713. Weber, F.A., Bartolomei, G., Hottiger, M.O., and Cinelli, P. (2013). Artd1/Parp1 regulates reprogramming by transcriptional regulation of Fgf4 via Sox2 ADP-ribosylation. Stem cells 31, 2364-2373. Wei, D., Kanai, M., Huang, S., and Xie, K. (2006). Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 27, 23-31. Wong, C.W., Hou, P.S., Tseng, S.F., Chien, C.L., Wu, K.J., Chen, H.F., Ho, H.N., Kyo, S., and Teng, S.C. (2010). Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem cells 28, 1510-1517. Wyatt, H.D., West, S.C., and Beattie, T.L. (2010). InTERTpreting telomerase structure and function. Nucleic acids research 38, 5609-5622. Zhang, P., Andrianakos, R., Yang, Y., Liu, C., and Lu, W. (2010). Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. The Journal of biological chemistry 285, 9180-9189. Zhao, W., Hisamuddin, I.M., Nandan, M.O., Babbin, B.A., Lamb, N.E., and Yang, V.W. (2004). Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 23, 395-402. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56536 | - |
dc.description.abstract | 端粒為染色體末端之特殊基因體構造,對於基因組完整性的調控以及癌細胞的產生息息相關。端粒酶是細胞內延長端粒的酵素,而端粒的長度主要由端粒酶的活性來調控。先前的研究指出轉錄因子Kruppel-like transcription factor 4 (KLF4) 會藉由結合至端粒酶中的活性催化單位,端粒反轉錄酶 (human telomerase reverse transcriptase; hTERT) 之啟動子,並活化端粒反轉錄酶表現。對於維持人類胚胎幹細胞的自我更新能力非常有貢獻。在本篇研究中,我們利用質譜分析確認poly(ADP-ribose) polymerase-1 (PARP-1) 為KLF4之交互作用蛋白。在癌細胞和人類胚胎幹細胞中,負向調控PARP-1會抑制端粒反轉錄酶表現,並使細胞內端粒酶活性下降。PARP-1會幫助KLF4結合到端粒反轉錄酶啟動子上並共同活化其基因表現,而此功能並不需要PARP-1酵素活性參與。本篇論文證明在癌細胞及幹細胞中,PARP-1為KLF4活化端粒反轉錄酶表現之共同調控者,且此發現可能對於幹細胞自我更新能力以及人類再生醫療研究有幫助。 | zh_TW |
dc.description.abstract | Telomeres are the specialized genomic structures at the ends of chromosomes and implicated in controlling genome integrity and cancer formation. Telomere length is mainly activated by expression of telomerase that elongates telomeres. Previous study has indicated that Kruppel-like transcription factor 4 (KLF4) activates expression of the human telomerase catalytic subunit, human telomerase reverse transcriptase (hTERT), through binding to the hTERT promoter and contributes to maintaining self-renewal in human embryonic stem cells. In this study, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel KLF4-interacting partner by mass spectrometry. Downregulation of PARP-1 reduced hTERT expression and telomerase activity in cancer cells and human embryonic stem cells. PARP-1 but not its catalytic activity is required for KLF4 localizing to the hTERT promoter and transcriptional coactivating gene expression. These results demonstrate that PARP-1 is one of the regulators to turn on telomerase activity in cancerous and stem cells by coactivating KLF4-dependent hTERT expression. Consequently, these findings may be important in stem cell self-renewal and human regenerative therapy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:33:36Z (GMT). No. of bitstreams: 1 ntu-103-R01445134-1.pdf: 2752559 bytes, checksum: fe62657cbfbb8353dc73acb857f65ef8 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv INTRODUCTION 1 MATERIALS & METHODS 5 Cell Culture and Transfection 5 Plasmids and Viral Transduction 5 RNA Purification and Quantitative Reverse Transcription PCR 6 RNA Interference 6 Telomerase Activity Assay 6 Luciferase Reporter Assay 7 Chromatin Immunoprecipitation (ChIP) Assay 7 GST Pulldown Assay 8 RESULTS 9 Identification of PARP-1 as a KLF4-interacting protein 9 The DNA-binding domain of KLF4 interacts with the C-terminal region of the PARP-1 automodification domain 9 Endogenous PARP-1 contributes to hTERT mRNA expression in human cancer cells 10 PARP-1 regulates the KLF4-mediated hTERT transcription 10 PARP-1 promotes KLF4 activating hTERT promoter independent of the catalytic activity of PARP-1 11 PARP-1 stabilizes KLF4 localizing to the hTERT promoter 12 Requirement of PARP-1 for maintaining hTERT expression in hESCs 12 DISCUSSION 14 FIGURES 17 TABLES 30 SUPPLYMENTARY FIGURES 31 CONTRIBUTION TABLE 33 REFERENCES 34 | |
dc.language.iso | en | |
dc.title | 研究幹細胞與癌細胞中PARP-1輔助KLF4調控端粒酶之表現 | zh_TW |
dc.title | PARP-1 is a coregulator in KLF4-mediated telomerase expression in stem and cancer cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林敬哲(Jing-Jer Lin),李財坤(Tsai-Kun Li) | |
dc.subject.keyword | 幹細胞,端粒?,端粒反轉錄?,PARP-1,KLF4, | zh_TW |
dc.subject.keyword | stem cells,telomerase,hTERT,PARP-1,KLF4, | en |
dc.relation.page | 39 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-13 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。