Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56534
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱麗珠
dc.contributor.authorYu-Chun Chiuen
dc.contributor.author邱毓淳zh_TW
dc.date.accessioned2021-06-16T05:33:29Z-
dc.date.available2019-10-15
dc.date.copyright2014-10-15
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citationAbe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361-13368.
Altier N, Stewart J (1997) Tachykinin NK-1 and NK-3 selective agonists induce analgesia in the formalin test for tonic pain following intra-VTA or intra-accumbens microinfusions. Behav Brain Res 89:151-165.
Altier N, Stewart J (1999) The Tachykinin NK-1 Receptor Antagonist, RP-67580, Infused Into the Ventral Tegmental Area Prevents Stress-Induced Analgesia in the Formalin Test. Physiol Behav 66:717-721.
Altier Ng (1993) The role of midbrain substance P in stress-induced analgesia using the formalin test for tonic pain. In: Concordia University.
Altier Ng, Stewart J (1993) Intra-VTA infusions of the substance P analogue, DiMe-C7, and intra-accumbens infusions of amphetamine induce analgesia in the formalin test for tonic pain. Brain Res 628:279-285.
Ankier SI (1974) New hot plate tests to quantify antinociceptive and narcotic antagonist activities. Eur J Pharmacol 27:1-4.
Azhdari Zarmehri H, Semnanian S, Fathollahi Y, Erami E, Khakpay R, Azizi H, Rohampour K (2011) Intra-Periaqueductal Gray Matter Microinjection of Orexin-A Decreases Formalin-Induced Nociceptive Behaviors in Adult Male Rats. The Journal of Pain 12:280-287.
Barbaresi P (1998) Immunocytochemical localization of substance P receptor in rat periaqueductal gray matter: a light and electron microscopic study. J Comp Neurol 398:473-490.
Barber RP, Vaughn JE, Randall Slemmon J, Salvaterra PM, Roberts E, Leeman SE (1979) The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. The Journal of Comparative Neurology 184:331-351.
Basbaum AI, Fields HL (1978) Endogenous pain control mechanisms: review and hypothesis. Ann Neurol 4:451-462.
Bayer L, Eggermann E, Saint-Mleux B, Machard D, Jones BE, Muhlethaler M, Serafin M (2002) Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J Neurosci 22:7835-7839.
Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46:575-605.
Beitz AJ, Shepard RD (1985) The midbrain periaqueductal gray in the rat. II. A Golgi analysis. J Comp Neurol 237:460-475.
Bester H, De Felipe C, Hunt SP (2001) The NK1 receptor is essential for the full expression of noxious inhibitory controls in the mouse. J Neurosci 21:1039-1046.
Bisetti A, Cvetkovic V, Serafin M, Bayer L, Machard D, Jones BE, Muhlethaler M (2006) Excitatory action of hypocretin/orexin on neurons of the central medial amygdala. Neuroscience 142:999-1004.
Brownstein MJ, Mroz EA, Stephen Kizer J, Palkovits M, Leeman SE (1976) Regional distribution of substance P in the brain of the rat. Brain Res 116:299-305.
Butler RK, Finn DP (2009) Stress-induced analgesia. Prog Neurobiol 88:184-202.
Chiou LC, Teng SF, Chang LY (2010a) Restraint stress induces analgesia through endogenous orexins via OX1 receptor-mediated endocannabinoid retrograde disinhibition in the ventrolateral periaqueductal gray. In: Neuroscience 2010, p Prog. No. 844.841. San Diego, USA.
Chiou LC, Lee HJ, Ho YC, Chen SP, Liao YY, Ma CH, Fan PC, Fuh JL, Wang SJ (2010b) Orexins/hypocretins: pain regulation and cellular actions. Curr Pharm Des 16:3089-3100.
Commons KG, Valentino RJ (2002) Cellular basis for the effects of substance P in the periaqueductal gray and dorsal raphe nucleus. J Comp Neurol 447:82-97.
Coons EE, Levak M, Miller NE (1965) Lateral hypothalamus: learning of food-seeking response motivated by electrical stimulation. Science 150:1320-1321.
Dafny N, Dong WQ, Prieto-Gomez C, Reyes-Vazquez C, Stanford J, Qiao JT (1996) Lateral hypothalamus: Site involved in pain modulation. Neuroscience 70:449-460.
De Felipe C, Herrero JF, O'Brien JA, Palmer JA, Doyle CA, Smith AJ, Laird JM, Belmonte C, Cervero F, Hunt SP (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394-397.
de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322-327.
Drew GM, Mitchell VA, Vaughan CW (2005) Postsynaptic actions of substance P on rat periaqueductal grey neurons in vitro. Neuropharmacology 49:587-595.
Drew GM, Mitchell VA, Vaughan CW (2008) Glutamate spillover modulates GABAergic synaptic transmission in the rat midbrain periaqueductal grey via metabotropic glutamate receptors and endocannabinoid signaling. J Neurosci 28:808-815.
Drew GM, Lau BK, Vaughan CW (2009) Substance P drives endocannabinoid-mediated disinhibition in a midbrain descending analgesic pathway. J Neurosci 29:7220-7229.
Ebner K, Rupniak NM, Saria A, Singewald N (2004) Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc Natl Acad Sci U S A 101:4280-4285.
Ebner K, Singewald GM, Whittle N, Ferraguti F, Singewald N (2008) Neurokinin 1 receptor antagonism promotes active stress coping via enhanced septal 5-HT transmission. Neuropsychopharmacology 33:1929-1941.
Franco AC, Prado WA (1996) Antinociceptive effects of stimulation of discrete sites in the rat hypothalamus: evidence for the participation of the lateral hypothalamus area in descending pain suppression mechanisms. Braz J Med Biol Res 29:1531-1541.
Franklin K, Paxinos G (1997) The mouse brain in stereotaxic coordinates, 1997. Academic, San Diego.
Gregg LC, Jung KM, Spradley JM, Nyilas R, Suplita RL, 2nd, Zimmer A, Watanabe M, Mackie K, Katona I, Piomelli D, Hohmann AG (2012) Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-alpha initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia. J Neurosci 32:9457-9468.
Grip L, Lonne-Rahm SB, Holst M, Johansson B, Nordlind K, Theodorsson E, El-Nour H (2013) Substance P alterations in skin and brain of chronically stressed atopic-like mice. J Eur Acad Dermatol Venereol 27:199-205.
Hokfelt T, Pernow B, Wahren J (2001) Substance P: a pioneer amongst neuropeptides. J Intern Med 249:27-40.
Heidari-Oranjaghi N, Azhdari-Zarmehri H, Erami E, Haghparast A (2012) Antagonism of orexin-1 receptors attenuates swim- and restraint stress-induced antinociceptive behaviors in formalin test. Pharmacology Biochemistry and Behavior 103:299-307.
Helmstetter FJ, Tershner SA (1994) Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociceptive but not cardiovascular aversive conditional responses. J Neurosci 14:7099-7108.
Hervieu GJ, Cluderay JE, Harrison DC, Roberts JC, Leslie RA (2001) Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord. Neuroscience 103:777-797.
Ho YC, Lee HJ, Tung LW, Liao YY, Fu SY, Teng SF, Liao HT, Mackie K, Chiou LC (2011) Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition. J Neurosci 31:14600-14610.
Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108-1112.
Holden JE, Pizzi JA, Jeong Y (2009) An NK1 receptor antagonist microinjected into the periaqueductal gray blocks lateral hypothalamic-induced antinociception in rats. Neurosci Lett 453:115-119.
Jatsu Azkue J, Knopfel T, Kuhn R, Marı́a Mateos J, Grandes P (1997) Distribution of the metabotropic glutamate receptor subtype mGluR5 in rat midbrain periaqueductal grey and relationship with ascending spinofugal afferents. Neurosci Lett 228:1-4.
Kohlmeier KA, Watanabe S, Tyler CJ, Burlet S, Leonard CS (2008) Dual orexin actions on dorsal raphe and laterodorsal tegmentum neurons: noisy cation current activation and selective enhancement of Ca2+ transients mediated by L-type calcium channels. J Neurophysiol 100:2265-2281.
Kukkonen JP, Leonard CS (2014) Orexin/hypocretin receptor signalling cascades. Br J Pharmacol 171:314-331.
Li JL, Ding YQ, Xiong KH, Li JS, Shigemoto R, Mizuno N (1998) Substance P receptor (NK1)-immunoreactive neurons projecting to the periaqueductal gray: distribution in the spinal trigeminal nucleus and the spinal cord of the rat. Neurosci Res 30:219-225.
Lin CC, Chen WN, Chen CJ, Lin YW, Zimmer A, Chen CC (2012) An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc Natl Acad Sci U S A 109:E76-83.
Ljungdahl A, Hokfelt T, Nilsson G, Goldstein M (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat—II. Light microscopic localization in relation to catecholamine-containing neurons. Neuroscience 3:945-976.
Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8:1488-1500.
Mantyh PW (2002) Neurobiology of substance P and the NK1 receptor. The Journal of clinical psychiatry 63 Suppl 11:6-10.
Minami M, Kuraishi Y, Kawamura M, Yamaguchi T, Masu Y, Nakanishi S, Satoh M (1989) Enhancement of preprotachykinin A gene expression by adjuvant-induced inflammation in the rat spinal cord: possible involvement of substance P-containing spinal neurons in nociception. Neurosci Lett 98:105-110.
Mobarakeh JI, Takahashi K, Sakurada S, Nishino S, Watanabe H, Kato M, Yanai K (2005) Enhanced antinociception by intracerebroventricularly and intrathecally-administered orexin A and B (hypocretin-1 and -2) in mice. Peptides 26:767-777.
Nakanishi S (1994) Metabotropic glutamate receptors: Synaptic transmission, modulation, and plasticity. Neuron 13:1031-1037.
Nyilas R, Gregg LC, Mackie K, Watanabe M, Zimmer A, Hohmann AG, Katona I (2009) Molecular architecture of endocannabinoid signaling at nociceptive synapses mediating analgesia. Eur J Neurosci 29:1964-1978.
Olango WM, Roche M, Ford GK, Harhen B, Finn DP (2012) The endocannabinoid system in the rat dorsolateral periaqueductal grey mediates fear-conditioned analgesia and controls fear expression in the presence of nociceptive tone. Br J Pharmacol 165:2549-2560.
Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996-10015.
Quirion R, Shults CW, Moody TW, Pert CB, Chase TN, O'Donohue TL (1983) Autoradiographic distribution of substance P receptors in rat central nervous system. Nature 303:714-716.
Rosen A, Brodin K, Eneroth P, Brodin E (1992) Short-term restraint stress and s.c. saline injection alter the tissue levels of substance P and cholecystokinin in the peri-aqueductal grey and limbic regions of rat brain. Acta Physiol Scand 146:341-348.
Rosen A, Zhang YX, Lund I, Lundeberg T, Yu LC (2004) Substance P microinjected into the periaqueductal gray matter induces antinociception and is released following morphine administration. Brain Res 1001:87-94.
Sakurai T et al. (1998) Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior. Cell 92:573-585.
Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726-731.
Silva E, Hernandez L, Contreras Q, Guerrero F, Alba G (2000) Noxious stimulation increases glutamate and arginine in the periaqueductal gray matter in rats: a microdialysis study. Pain 87:131-135.
Smith DW, Hewson L, Fuller P, Williams AR, Wheeldon A, Rupniak NM (1999) The substance P antagonist L-760,735 inhibits stress-induced NK(1) receptor internalisation in the basolateral amygdala. Brain Res 848:90-95.
Stewart JM, Getto CJ, Neldner K, Reeve EB, Krivoy WA, Zimmermann E (1976) Substance P and analgesia. Nature 262:784-785.
Takayama H, Ota Z, Ogawa N (1986) Effect of immobilization stress on neuropeptides and their receptors in rat central nervous system. Regul Pept 15:239-248.
Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S (1992) A family of metabotropic glutamate receptors. Neuron 8:169-179.
Truesdell LS, Bodnar RJ (1987) Reduction in cold-water swim analgesia following hypothalamic paraventricular nucleus lesions. Physiol Behav 39:727-731.
Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393-411.
Tsujino N, Sakurai T (2009) Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 61:162-176.
Valverde O, Ledent C, Beslot F, Parmentier M, Roques BP (2000) Reduction of stress-induced analgesia but not of exogenous opioid effects in mice lacking CB1 receptors. Eur J Neurosci 12:533-539.
van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB (1998) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci 18:7962-7971.
Vaughan CW, Connor M, Bagley EE, Christie MJ (2000) Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro. Mol Pharmacol 57:288-295.
Walker JM, Huang SM, Strangman NM, Tsou K, Sanudo-Pena MC (1999) Pain modulation by release of the endogenous cannabinoid anandamide. Proc Natl Acad Sci U S A 96:12198-12203.
Watanabe S, Kuwaki T, Yanagisawa M, Fukuda Y, Shimoyama M (2005) Persistent pain and stress activate pain-inhibitory orexin pathways. Neuroreport 16:5-8.
Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, Yamanaka A, Diano S, Horvath TL, Sakurai T, Toll L, Kilduff TS (2008) Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. J Clin Invest 118:2471-2481.
Xin L, Geller EB, Liu-Chen LY, Chen C, Adler MW (1997) Substance P release in the rat periaqueductal gray and preoptic anterior hypothalamus after noxious cold stimulation: effect of selective mu and kappa opioid agonists. J Pharmacol Exp Ther 282:1055-1063.
Yamamoto T, Nozaki-Taguchi N, Chiba T (2002) Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test. Br J Pharmacol 137:170-176.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56534-
dc.description.abstract物質P (substance P) 已經被研究出在脊髓給予時可以發揮止痛效果並且和緊張所致止痛 (stress-induced analgesia; SIA) 有關,主要作用於神經激肽-1受體 (neurokinin-1 receptor; NK1R) 上,然而,它的實際作用機轉仍不清楚,但內生性大麻酯 (endocannabinoid) 被認為有參與其中的機制。在先前的研究中我們發現活化食慾素1受體 (orexin 1 receptor; OX1R) 能夠在中腦環導水管灰質腹外側區 (ventrolateral periaqueductal gray; vlPAG) 進行內生性大麻酯逆行性訊息 (retrograde signaling) 產生止痛效果,而這個效果是藉由食慾素A (orexin A) 所誘導且和緊張所致止痛有關。此外,過去有電生理的研究已經提出物質P會活化中腦環導水管灰質 (periaqueductal gray; PAG) 的麩胺酸神經元 (glutamatergic neuron), 並釋放出大量麩胺酸 (glutamate) 作用在突觸周圍的第5型代謝性麩胺酸受體 (type 5 metabolic glutamate receptor; mGluR5) 產生內生性大麻酯,並在同個核區內藉由作用於γ-氨基丁酸 (γ-aminobutyric acid; GABA) 神經終端突觸上的大麻酯1受體 (cannabinoid 1 receptor; CB1R) 而抑制GABA釋放,出現逆行性去抑制 (disinhibition) 現象。
因此,我們在這篇論文中使用藥理學的方法驗證食慾素A活化在vlPAG內含有神經激肽的神經 (neuroknin-containing neuron) 釋放物質P經由麩胺酸-mGluR5-內生性大麻酯-CB1R的訊息路徑來產生止痛現象,而且此止痛機轉是藉由食慾素A所誘導。
首先,我們發現在vlPAG內注射物質P可以顯著增加縮腳潛伏期 (withdrawal latency) 的時間,而此止痛效果可以被MPEP和AM251所阻斷,代表mGluR5及CB1R皆涉及物質P的止痛效果。第二,在vlPAG內注射食慾素A能夠產生顯著的止痛效果,且能被L-703,606和MPEP所阻斷,指出NK1R和mGluR5皆參與在食慾素A的止痛作用中。第三,我們過去已經建立一個對小鼠使用束縛壓力 (restraint stress) 所造成之緊張所致止痛的模式,即將小鼠束縛在50 ml的離心管後其縮腳潛伏期會顯著增長,而在實驗中這樣的止痛模式可以藉由先投與L-703,606或MPEP被抑制掉,而其使用的劑量並不會影響老鼠的活動力。第四,經過束縛壓力處理過後的小鼠相較於控制組其vlPAG均質液內物質P蛋白質量顯著增加。第五,先在vlPAG內注射SB-334867能夠倒轉因為壓力而上升的物質P。
本篇論文的實驗結果和先前的電生理結果可以推測出物質P所產生的止痛是在vlPAG內透過活化麩胺酸神經釋放麩胺酸進而活化mGluR5,產生內生性大麻酯逆行性去抑制。既然緊張所致止痛可以被NK1R、mGluR5和OX1R拮抗劑所抑制,由此證明緊張所致止痛是在束縛壓力時釋放食慾素A產生止痛效果並在vlPAG內經由釋放物質P透過mGluR5-內生性大麻酯機制造成去抑制現象。
zh_TW
dc.description.abstractSubstance P has been known to be antinociceptive when given at the supraspinal level and is involved in stress-induced analgesia (SIA), primarily through the neurokinin-1 receptor (NK1R). However, its action mechanism(s) remain unclear while may involve endocannabinoids. Previously, we have found that activation of orexin 1 receptors in the ventrolateral periaqueductal gray (vlPAG) can induce antinociception through the endocannabinoid retrograde signaling, and this effect may contribute to SIA induced by orexin A. Besides, an electrophysiological study showed that substance P can activate glutamatergic neurons in the PAG to release massive glutamate that activates perisynaptic type 5 metabotropic glutamate receptor (mGluR5), yielding endocannabinoid that engages on the cannabinoid 1 receptor (CB1R) of presynaptic GABAergic terminals to inhibit GABA release, producing retrograde disinhibition in the PAG.
We, therefore, validated a hypothesis in this study that orexin A activates neurokinin-containing neurons in the vlPAG to release substance P and induce antinociception through the glutamate-mGluR5-endocannabinoid-CB1R signaling, and this mechanism may contribute to orexin A-induced SIA using the pharmacological approach. The SIA model was induced by giving mice a 30-min restraint stress and the antinociceptive response was accessed by the withdrawal latency of mice in the hot-plate test in mice. All drugs were administered by intra-vlPAG (i.pag.) microinjection. Besides, the level of substance P in the homogenate of the vlPAG in restrained un-restrained mice was also measured by enzyme immunoassay (EIA).
First, we found that i.pag. microinjection of substance P significantly increased the withdrawal latency. This analgesic effect was blocked by MPEP, an mGluR5 antagonist and AM251, a CB1R antagonist, suggesting CB1Rs and mGluR5s are involved in the analgesic effect of substance P. Second, i.pag. orexin A produced a significant antinociceptive effect, in a manner blocked by i.pag. L-703,606, an NK1 receptor antagonist, and MPEP. This suggests that NK1R and mGluR5 are involved in the analgesic effect of orexin A. Third, we have established a SIA model induced by acute restraint stress in mice, i.e. the withdrawal latency of the mouse restrained in a 50-ml centrifuge tube was significantly longer than in the unrestrained group. This SIA was significantly prevented by i.pag. pretreatment with either L-703,606 or MPEP at the dose that did not affect the locomotor activity. Fourth, the substance P protein level in the vlPAG homogenate was significantly higher in restrained mice, as compared to the unrestrained control group. Fifth, stress-induced elevation of substance P in the vlPAG was significantly reversed by i.pag. pretreatment of SB-334867, a selective orexin OX1 receptor antagonist.
The results in this study and previous electrophysiological results suggest that substance P produces supraspinal analgesia through activating glutamatergic neurons in the vlPAG to release glutamate that activates mGluR5, resulting in endocannabinoid retrograde disinhibition in the vlPAG. Since SIA can be blocked by NK1R, mGluR5 and OX1R antagonists, it is suggested that SIA is mediated orexins that are released during restraint stress to induce analgesia via releasing substance P that produces disinhibition in the vlPAG via the mGluR5-endocannabinoid mechanism.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:33:29Z (GMT). No. of bitstreams: 1
ntu-103-R01443013-1.pdf: 1638066 bytes, checksum: 52c20f3d0bbb5a7626b7d3892f559981 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
縮寫表 iii
中文摘要 v
Abstract vii
Introduction 1
Aim 12
Materials and Methods 14
Results 21
Discussion 29
Conclusions 37
Figures 38
References 47
dc.language.isoen
dc.subject物質Pzh_TW
dc.subject止痛zh_TW
dc.subject緊張zh_TW
dc.subject食慾素zh_TW
dc.subject第5型代謝性麩胺酸受體zh_TW
dc.subjectorexinen
dc.subjectstressen
dc.subjectanalgesiaen
dc.subjectvlPAGen
dc.subjectmGluR5en
dc.subjectSIAen
dc.subjectsubstance Pen
dc.title緊張所致止痛的全新機轉︰食慾素、物質P和第5型代謝性麩胺酸受體之貢獻zh_TW
dc.titleA Novel Mechanism of Stress-Induced Analgesia:Involvement of Orexin, Substance P, and mGluR5en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳景宗,簡伯武,陶寶綠,陳志成
dc.subject.keyword緊張,止痛,食慾素,物質P,第5型代謝性麩胺酸受體,zh_TW
dc.subject.keywordstress,analgesia,SIA,orexin,substance P,mGluR5,vlPAG,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2014-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved