Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56533
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧哲明(Che-Ming Teng)
dc.contributor.authorChueh-Heng Wuen
dc.contributor.author吳珏衡zh_TW
dc.date.accessioned2021-06-16T05:33:26Z-
dc.date.available2024-08-13
dc.date.copyright2014-10-15
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citationArlander SJ, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM (2003). Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem 278(52): 52572-52577.
Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF, et al. (2006). Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12(21): 6494-6501.
Bargonetti J, Manfredi JJ (2002). Multiple roles of the tumor suppressor p53. Curr Opin Oncol 14(1): 86-91.
Barr FA, Sillje HH, Nigg EA (2004). Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5(6): 429-440.
Burdach S (2014). Molecular precision chemotherapy: overcoming resistance to targeted therapies? Clin Cancer Res 20(5): 1064-1066.
Burrows F, Zhang H, Kamal A (2004). Hsp90 activation and cell cycle regulation. Cell Cycle 3(12): 1530-1536.
Cabon L, Galan-Malo P, Bouharrour A, Delavallee L, Brunelle-Navas MN, Lorenzo HK, et al. (2012). BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death Differ 19(2): 245-256.
Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, et al. (2003). Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17(3): 590-603.
Charette SJ, Lavoie JN, Lambert H, Landry J (2000). Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20(20): 7602-7612.
Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. (2010). EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363(18): 1734-1739.
Clifford B, Beljin M, Stark GR, Taylor WR (2003). G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res 63(14): 4074-4081.
Cowen LE, Lindquist S (2005). Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309(5744): 2185-2189.
Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G (1998). The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79(2): 129-168.
Detterbeck FC, Boffa DJ, Tanoue LT (2009). The new lung cancer staging system. Chest 136(1): 260-271.
Detterbeck FC, Lewis SZ, Diekemper R, Addrizzo-Harris D, Alberts WM (2013). Executive Summary: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl): 7S-37S.
Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006). Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2(10): e135.
Engelman JA (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8): 550-562.
Erlichman C (2009). Tanespimycin: the opportunities and challenges of targeting heat shock protein 90. Expert Opin Investig Drugs 18(6): 861-868.
Feramisco JR, Gross M, Kamata T, Rosenberg M, Sweet RW (1984). Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell 38(1): 109-117.
Fraumeni JF, Jr. (1975). Respiratory carcinogenesis: an epidemiologic appraisal. J Natl Cancer Inst 55(5): 1039-1046.
Frisch SM, Screaton RA (2001). Anoikis mechanisms. Curr Opin Cell Biol 13(5): 555-562.
Fu X, Liu C, Liu Y, Feng X, Gu L, Chen X, et al. (2003). Small heat shock protein Hsp16.3 modulates its chaperone activity by adjusting the rate of oligomeric dissociation. Biochem Biophys Res Commun 310(2): 412-420.
Galluzzi L, Blomgren K, Kroemer G (2009). Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 10(7): 481-494.
Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999). HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13(14): 2061-2070.
Gartner EM, Silverman P, Simon M, Flaherty L, Abrams J, Ivy P, et al. (2012). A phase II study of 17-allylamino-17-demethoxygeldanamycin in metastatic or locally advanced, unresectable breast cancer. Breast Cancer Res Treat 131(3): 933-937.
Gaspar N, Sharp SY, Pacey S, Jones C, Walton M, Vassal G, et al. (2009). Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells. Cancer Res 69(5): 1966-1975.
Giessrigl B, Krieger S, Rosner M, Huttary N, Saiko P, Alami M, et al. (2012). Hsp90 stabilizes Cdc25A and counteracts heat shock-mediated Cdc25A degradation and cell-cycle attenuation in pancreatic carcinoma cells. Hum Mol Genet 21(21): 4615-4627.
Goes FS, Martin J (2001). Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mik1, Wee1 and Swe1. Eur J Biochem 268(8): 2281-2289.
Gozuacik D, Kimchi A (2007). Autophagy and cell death. Curr Top Dev Biol 78: 217-245.
Gupta R, Dastane AM, Forozan F, Riley-Portuguez A, Chung F, Lopategui J, et al. (2009). Evaluation of EGFR abnormalities in patients with pulmonary adenocarcinoma: the need to test neoplasms with more than one method. Mod Pathol 22(1): 128-133.
Hatzivassiliou G, Haling JR, Chen H, Song K, Price S, Heald R, et al. (2013). Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501(7466): 232-236.
He K, Zheng X, Zhang L, Yu J (2013). Hsp90 inhibitors promote p53-dependent apoptosis through PUMA and Bax. Mol Cancer Ther 12(11): 2559-2568.
Heath EI, Hillman DW, Vaishampayan U, Sheng SJ, Sarkar F, Harper F, et al. (2008). A Phase II Trial of 17-Allylamino-17-Demethoxygeldanamycin in Patients with Hormone-Refractory Metastatic Prostate Cancer. Clinical Cancer Research 14(23): 7940-7946.
Hendrick JP, Hartl FU (1993). Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62: 349-384.
Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, et al. (1997). Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106(6): 348-360.
Herrup K, Yang Y (2007). Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 8(5): 368-378.
Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013). Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10): 714-726.
Hong DS, Banerji U, Tavana B, George GC, Aaron J, Kurzrock R (2013). Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer Treat Rev 39(4): 375-387.
Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA (2001). Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61(10): 4003-4009.
Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC (2013). Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl): e278S-313S.
Janne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, et al. (2013). Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 14(1): 38-47.
Jeffrey KL, Camps M, Rommel C, Mackay CR (2007). Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 6(5): 391-403.
Jhaveri K, Modi S (2012). HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol 65: 471-517.
Jin Z-H, Kurosu T, Yamaguchi M, Arai A, Miura O (2005). Hematopoietic cytokines enhance Chk1-dependent G2/M checkpoint activation by etoposide through the Akt/GSK3 pathway to inhibit apoptosis. Oncogene 24(12): 1973-1981.
Kamal A, Burrows FJ (2004). Hsp90 inhibitors as selective anticancer drugs. Discov Med 4(23): 277-280.
Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, et al. (2003). A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956): 407-410.
Katakami N, Atagi S, Goto K, Hida T, Horai T, Inoue A, et al. (2013). LUX-Lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol 31(27): 3335-3341.
Kerr JF, Wyllie AH, Currie AR (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4): 239-257.
Khalil AA, Kabapy NF, Deraz SF, Smith C (2011). Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta 1816(2): 89-104.
Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, et al. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8): 786-792.
Kolch W (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6(11): 827-837.
Lu X, Xiao L, Wang L, Ruden DM (2012). Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem Pharmacol 83(8): 995-1004.
Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N, et al. (2011). HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 17(15): 5132-5139.
Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10): 947-957.
Morimoto RI, Kline MP, Bimston DN, Cotto JJ (1997). The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32: 17-29.
Mulcahy LS, Smith MR, Stacey DW (1985). Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature 313(5999): 241-243.
Munster PN, Basso A, Solit D, Norton L, Rosen N (2001). Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. See: E. A. Sausville, Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters, Clin. Cancer Res., 7: 2155-2158, 2001. Clin Cancer Res 7(8): 2228-2236.
Neckers L, Workman P (2012). Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18(1): 64-76.
Oda K, Matsuoka Y, Funahashi A, Kitano H (2005). A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1: 2005 0010.
Oh WK, Galsky MD, Stadler WM, Srinivas S, Chu F, Bubley G, et al. (2011). Multicenter Phase II Trial of the Heat Shock Protein 90 Inhibitor, Retaspimycin Hydrochloride (IPI-504), in Patients With Castration-resistant Prostate Cancer. Urology 78(3): 626-630.
Pacey S, Gore M, Chao D, Banerji U, Larkin J, Sarker S, et al. (2012). A Phase II trial of 17-allylamino, 17-demethoxygeldanamycin (17-AAG, tanespimycin) in patients with metastatic melanoma. Invest New Drugs 30(1): 341-349.
Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, et al. (2005). KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2(1): e17.
Perona R, Sanchez-Perez I (2004). Control of oncogenesis and cancer therapy resistance. Br J Cancer 90(3): 573-577.
Pfister DG, Johnson DH, Azzoli CG, Sause W, Smith TJ, Baker Jr S, et al. (2004). American Society of Clinical Oncology treatment of unresectable non–small-cell lung cancer guideline: Update 2003. Journal of Clinical Oncology 22(2): 330-353.
Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, et al. (2008). Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol 26(21): 3552-3559.
Pockley AG (2003). Heat shock proteins as regulators of the immune response. Lancet 362(9382): 469-476.
Pommier Y, Leo E, Zhang H, Marchand C (2010). DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17(5): 421-433.
Ramnath N, Dilling TJ, Harris LJ, Kim AW, Michaud GC, Balekian AA, et al. (2013). Treatment of stage III non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl): e314S-340S.
Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, et al. (2001). Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3(9): 839-843.
Reikvam H, Ersvaer E, Bruserud O (2009). Heat shock protein 90 - a potential target in the treatment of human acute myelogenous leukemia. Curr Cancer Drug Targets 9(6): 761-776.
Richardson PG, Chanan-Khan AA, Lonial S, Krishnan AY, Carroll MP, Alsina M, et al. (2011). Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study. Br J Haematol 153(6): 729-740.
Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. (2003). Cell migration: integrating signals from front to back. Science 302(5651): 1704-1709.
Roux PP, Blenis J (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68(2): 320-344.
Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007). Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6(4): 304-312.
Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. (2006). Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24): 2542-2550.
Savill J, Gregory C, Haslett C (2003). Cell biology. Eat me or die. Science 302(5650): 1516-1517.
Schonn I, Hennesen J, Dartsch DC (2010). Cellular responses to etoposide: cell death despite cell cycle arrest and repair of DNA damage. Apoptosis 15(2): 162-172.
Schubbert S, Shannon K, Bollag G (2007). Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7(4): 295-308.
Schwartz AM, Rezaei MK (2013). Diagnostic surgical pathology in lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl): e251S-262S.
Sengupta S, Harris CC (2005). p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6(1): 44-55.
Sequist LV, Gettinger S, Senzer NN, Martins RG, Janne PA, Lilenbaum R, et al. (2010). Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J Clin Oncol 28(33): 4953-4960.
Sequist LV, von Pawel J, Garmey EG, Akerley WL, Brugger W, Ferrari D, et al. (2011). Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol 29(24): 3307-3315.
Shahbazi J, Lock R, Liu T (2013a). Tumor protein 53-induced nuclear protein 1 (TP53INP1) enhances p53 function and represses tumorigenesis. Frontiers in Genetics 4.
Shahbazi J, Lock R, Liu T (2013b). Tumor Protein 53-Induced Nuclear Protein 1 Enhances p53 Function and Represses Tumorigenesis. Front Genet 4: 80.
Shimamura T, Li D, Ji H, Haringsma HJ, Liniker E, Borgman CL, et al. (2008). Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance. Cancer Res 68(14): 5827-5838.
Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ, Inoue T, et al. (2012). Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res 18(18): 4973-4985.
Shukuya T, Takahashi T, Tamiya A, Ono A, Igawa S, Tsuya A, et al. (2009). Evaluation of the safety and compliance of 3-week cycles of vinorelbine on days 1 and 8 and cisplatin on day 1 as adjuvant chemotherapy in Japanese patients with completely resected pathological stage IB to IIIA non-small cell lung cancer: a retrospective study. Jpn J Clin Oncol 39(3): 158-162.
Siegel R, Naishadham D, Jemal A (2013). Cancer statistics, 2013. CA Cancer J Clin 63(1): 11-30.
Socinski MA, Evans T, Gettinger S, Hensing TA, Sequist LV, Ireland B, et al. (2013). Treatment of stage IV non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl): e341S-368S.
Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153): 561-566.
Solit DB, Osman I, Polsky D, Panageas KS, Daud A, Goydos JS, et al. (2008). Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res 14(24): 8302-8307.
Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, et al. (2005). The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7(2): 195-201.
Stepanova L, Leng X, Parker SB, Harper JW (1996). Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10(12): 1491-1502.
Suzuki M, Shigematsu H, Iizasa T, Hiroshima K, Nakatani Y, Minna JD, et al. (2006). Exclusive mutation in epidermal growth factor receptor gene, HER‐2, and KRAS, and synchronous methylation of nonsmall cell lung cancer. Cancer 106(10): 2200-2207.
Tanaka T, Halicka HD, Traganos F, Seiter K, Darzynkiewicz Z (2007). Induction of ATM activation, histone H2AX phosphorylation and apoptosis by etoposide: relation to cell cycle phase. Cell Cycle 6(3): 371-376.
Tanizaki J, Okamoto I, Okabe T, Sakai K, Tanaka K, Hayashi H, et al. (2012). Activation of HER family signaling as a mechanism of acquired resistance to ALK inhibitors in EML4-ALK-positive non-small cell lung cancer. Clin Cancer Res 18(22): 6219-6226.
Travers J, Sharp S, Workman P (2012). HSP90 inhibition: two-pronged exploitation of cancer dependencies. Drug Discov Today 17(5-6): 242-252.
Trepel J, Mollapour M, Giaccone G, Neckers L (2010). Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10(8): 537-549.
Tse AN, Klimstra DS, Gonen M, Shah M, Sheikh T, Sikorski R, et al. (2008). A phase 1 dose-escalation study of irinotecan in combination with 17-allylamino-17-demethoxygeldanamycin in patients with solid tumors. Clin Cancer Res 14(20): 6704-6711.
Turke AB, Song Y, Costa C, Cook R, Arteaga CL, Asara JM, et al. (2012). MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res 72(13): 3228-3237.
van Attikum H, Gasser SM (2005). The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6(10): 757-765.
Vanneman M, Dranoff G (2012). Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4): 237-251.
Whitesell L, Lin NU (2012). HSP90 as a platform for the assembly of more effective cancer chemotherapy. Biochim Biophys Acta 1823(3): 756-766.
Whitesell L, Lindquist SL (2005). HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10): 761-772.
Workman P, Powers MV (2007). Chaperoning cell death: a critical dual role for Hsp90 in small-cell lung cancer. Nat Chem Biol 3(8): 455-457.
Wright JH, Munar E, Jameson DR, Andreassen PR, Margolis RL, Seger R, et al. (1999). Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc Natl Acad Sci U S A 96(20): 11335-11340.
Wu Y, Zhou BP (2007). Kinases meet at TSC. Cell Res 17(12): 971-973.
Yan W, Zhang W, Jiang T (2011). Oncogene addiction in gliomas: implications for molecular targeted therapy. J Exp Clin Cancer Res 30: 58.
Zaidi S, McLaughlin M, Bhide SA, Eccles SA, Workman P, Nutting CM, et al. (2012). The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage. PLoS One 7(4): e35436.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56533-
dc.description.abstract癌症已經蟬聯國人十大死因之首逾三十年,其中肺癌亦不論是在全球或是台灣,都位居癌症致死率之首。缺乏早期的確診工具使得疾病容易發展至末期才被偵測到,而當腫瘤已蔓延到手術無法切除的程度,則需要依靠全身性的化療藥物,或是標靶藥物進行治療。目前的標靶藥物雖然有效提升了肺癌患者的存活率,但仍然有部分病患發展出後天抗藥性,因此,新一代的抗癌藥物仍有待發展。
MPT0B640是一個具有arylamide結構的Hsp90抑制劑,本篇實驗發現其於Sulforodamine B (SRB) 和3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 測試中,能有效抑制人類非小細胞肺癌A549細胞的增生與存活,並能在Hsp90 activity assay kit中以IC50 = 110.18 nM的低濃度抑制Hsp90的活性。觀察MPT0B640所影響的蛋白表現,發現其能夠以濃度及時間依存性的方式,降低Hsp90多方受質蛋白的表現,如抑制Akt而使Akt的活化態減少,並抑制下游蛋白p-GSK3b的表現;抑制EGFR與其磷酸化;抑制MEK,而進一步抑制K-ras突變所造成的MEK、ERK高度活化。由於PI3K/Akt與MAPK路徑會共同造成mTOR的活化,所以使用MPT0B640抑制這兩條路徑,則觀察到p-mTOR的減少;Src、FAK亦為Hsp90受質蛋白,會受到MPT0B640的作用而降解,並促使Src與FAK的活化減少。且已知Src、FAK活化會參與在細胞的移行作用,於是也進行cell migration assay,發現MPT0B640會濃度依存性地抑制A549細胞移行。在細胞週期方面,發現給予MPT0B640能夠使細胞週期被干擾,並使mitotic phase相關的蛋白累積。而觀察細胞凋亡相關的蛋白表現,發現MPT0B640能夠促進p53累積、內生性細胞凋亡因子caspase-3, -6, -7的活化與切割,以及PARP的切割。而silence p53能夠部分回復細胞存活率,所以p53在MPT0B640導致的A549細胞凋亡中也扮演一定的角色。在腫瘤異體移植之動物實驗則發現,口服給予25、50、100 mg/kg的MPT0B640,皆能較控制組,延遲腫瘤生長天數,並於腫瘤組織中看到受質蛋白Akt被抑制的情形。
另一方面,我們亦將MPT0B640與治療非小細胞肺癌的傳統化療藥物taxol、gemcitabine、etoposide合併使用,並測定combination index (CI) value,發現MPT0B640能以低濃度增強三種傳統化療藥物的細胞毒殺作用。進一步觀察DNA損傷與細胞凋亡的蛋白表現,則與藥物合併使用產生的毒殺效果一致,MPT0B640能夠最明顯地與etoposide產生協同性毒殺作用,其次是gemcitabine,最後則是taxol。於是探討MPT0B640和etoposide合併使用產生協同作用的機轉,由觀察DNA修復及細胞週期相關的蛋白表現,發現MPT0B640可能藉由抑制Chk1及其活化,來干擾etoposide作用後所產生的細胞週期停滯及DNA修復。其中,DNA修復蛋白Rad51在此具有一定重要性;過度表現Rad51的A549細胞,能夠部分重建在兩藥合併使用下的細胞存活率。最後,於動物實驗亦觀察到兩藥併用時,抑制腫瘤生長的效果被增強。總結來說,MPT0B640能夠於單用時抑制多方Hsp90受質蛋白,因而促使A549細胞凋亡,合併它藥使用時,也能以低劑量增強藥物的效果,因此,MPT0B640可望成為有潛力的肺癌治療候選藥物。
zh_TW
dc.description.abstractLung cancer has been the leading cause of cancer-related death worldwide. Although current targeted therapy improves the survival rate of lung cancer patients, some of them, however, develop secondary resistance. Therefore, new drugs and mechanisms of anti-cancer therapies are urgently needed to be discovered.
The anti-cancer activities and mechanisms of action of a newly synthesized Hsp90 inhibitor, MPT0B640, were evaluated in this study. First, SRB and MTT assays revealed the antiproliferative activity and cytotoxicity of MPT0B640 in human lung adenocarcinoma A549 cells. Using Hsp90 activity assay kit, we discovered that MPT0B640 exerted a potent inhibitory effect on Hsp90 activity (IC50 = 110.18 nM). Next, MPT0B640 induced multiple Hsp90 client protein degradation. For example, MPT0B640 inhibited Akt and its activation, and further inhibited the activation of Akt downstream molecule, GSK3b. And then, depletion of MEK by MPT0B640 led to the abrogation of MEK/ERK hyperactivation. With a simultaneous inhibition of PI3K/Akt and MAPK by MPT0B640, we observed a decrease in mTOR phosphorylation. Src and FAK were also degraded upon MPT0B640 treatment. And the reduced phosphorylated form of Src and FAK were also observed. Because Src and FAK activations are known to be involved in cell migration, we investigated the migratory ability of MPT0B640-treated A549 cells, and found that cell migration was inhibited by MPT0B640. Next, we examined the effect of MPT0B640 on cell cycle. By disrupting cell cycle, MPT0B640 led to the mitotic protein accumulation in 24 hrs. With respect to A549 cell apoptosis, we found p53 accumulation, caspase-3, -6, -7 cleavage and PARP cleavage induced by MPT0B640. Moreover, A549 cells with transient p53 knockdown, displayed a partial reverse in cell viability, indicating the role of p53 in MPT0B640-induced A549 cell apoptosis. Finally, mice orally administrating 25, 50, 100 mg/kg MPT0B640, showed tumor growth delay in A549 tumor xenograft. And the suppression of a Hsp90 client, Akt, was seen in tumor xenograft tissues.

We next combined MPT0B640 with taxol, gemcitabine, etoposide, and evaluated the drug combinatorial effect, respectively. Cell viability assay and protein analysis showed that MPT0B640 enhanced the cytotoxicities of three conventional chemotherapeutic agents. Since the strongest synergistic effect (CI = 0.6) on MPT0B640 and etoposide combining group, we further discovered the drug combinatorial mechanisms on DNA damage response, and found that MPT0B640 enhanced etoposide cytotoxicty by disrupting the etoposide-induced cell cycle arrest and DNA repair mechanism. MPT0B640-induced depletion of checkpoint protein, Chk1, abrogated the checkpoint activation, and interrupted with G2/M related protein. Rad51, a homologous recombination protein which involved in DNA DSBs repair, was also inhibited in combination treatment. Cells overexpressing Rad51 became more resistant to MPT0B640 + etoposide treatment. Finally, the synergistic effect of MPT0B640 + etoposide on tumor growth inhibition was found in A549 xenograft models. And DNA damage markers were elevated in combination group in tumor xenograft tissues. Taken together, MPT0B640 may become a novel candidate for targeted therapy or a new strategy in combination with conventional drugs for lung cancer treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:33:26Z (GMT). No. of bitstreams: 1
ntu-103-R01443004-1.pdf: 5273771 bytes, checksum: 22c9adebeee2fbe73a9280d3f83b2972 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
縮寫表 IV
中文摘要 V
英文摘要 VII
第一章 研究動機與目的 1
第二章 文獻回顧 2
第三章 實驗材料與方法
第一節 實驗材料 38
第二節 實驗方法 40
第四章 實驗結果 46
第五章 討論 54
第六章 結論與展望 62
參考文獻 78
dc.language.isozh-TW
dc.subject協同作用zh_TW
dc.subject細胞凋亡zh_TW
dc.subject非小細胞肺癌zh_TW
dc.subjectNSCLCen
dc.subjectapoptosisen
dc.subjectsynergismen
dc.title探討新合成arylamide衍生物MPT0B640誘導細胞凋亡與合併etoposide呈現協同作用於人類非小細胞肺癌之體外及體內的作用機轉zh_TW
dc.titleMPT0B640, a novel synthetic arylamide derivative, induces cell apoptosis and displays synergistic anti-cancer activity with etoposide in human lung adenocarcinoma in vitro and in vivoen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor潘秀玲(Shiow-Lin Pan)
dc.contributor.oralexamcommittee顏茂雄,楊春茂,黃德富
dc.subject.keyword非小細胞肺癌,細胞凋亡,協同作用,zh_TW
dc.subject.keywordNSCLC,apoptosis,synergism,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2014-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved