Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56514
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭原忠(Yuan-Chung Cheng)
dc.contributor.authorShih-Kai Linen
dc.contributor.author林士凱zh_TW
dc.date.accessioned2021-06-16T05:32:26Z-
dc.date.available2016-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citation[1] P. Avakian, E. Abramson, R. G. Kepler, and J. C. Caris, Indirect observation of singlet—
triplet absorption in anthracene crystals, J. Chem. Phys., 39 (1963), p. 1127.
[2] C. E. Swenberg and W. T. Stacy, Bimolecular radiationless transitions in crystalline
tetracene, Chem. Phys. Lett., 2 (1968), p. 327.
[3] R. E. Merrifield, P. Avakian, and R. P. Groff, Fission of singlet excitons into pairs of
triplet excitons in tetracene crystals, Chem. Phys. Lett., 3 (1969), p. 386.
[4] N. Geacintov, M. Pope, and F. Vogel, Effect of magnetic field on the fluorescence of
tetracene crystals: exciton fission, Phys. Rev. Lett., 22 (1969), p. 593.
[5] S. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, and W. G. Schneider, Laser
generation of excitons and fluorescence in anthracene crystals, J. Chem. Phys., 42
(2004), p. 330.
[6] W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p-n junction
solar cells, J. Appl. Phys., 32 (1961), p. 510.
[7] M. C. Hanna and A. J. Nozik, Solar conversion efficiency of photovoltaic and photoelectrolysis
cells with carrier multiplication absorbers, J. Appl. Phys., 100 (2006),
p. 074510.
[8] D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E.
Bahlke, S. Reineke, T. Van Voorhis, and M. A. Baldo, External quantum efficiency
above 100cell., Science, 340 (2013), p. 334.
[9] M. B. Smith and J. Michl, Singlet fission, Chem. Rev., 110 (2010), p. 6891.
66
[10] J. Frenkel, On the transformation of light into heat in solids. i, Phys. Rev., 37 (1931),
p. 17.
[11] W.-L. Chan, T. C. Berkelbach, M. R. Provorse, N. R. Monahan, J. R. Tritsch, M. S.
Hybertsen, D. R. Reichman, J. Gao, and X.-Y. Zhu, The quantum coherent mechanism
for singlet fission: Experiment and theory, Acc. Chem. Res., 46 (2013), p. 1321.
[12] J. C. Johnson, A. J. Nozik, and J. Michl, The role of chromophore coupling in singlet
fission, Acc. Chem. Res., 46 (2013), p. 1290.
[13] P. M. Zimmerman, C. B. Musgrave, and M. Head-Gordon, A correlated electron
view of singlet fission, Acc. Chem. Res., 46 (2013), p. 1339.
[14] M. B. Smith and J. Michl, Recent advances in singlet fission., Annu. Rev. Phys.
Chem., 64 (2013), p. 361.
[15] C. Jundt, G. Klein, B. Sipp, J. Le Moigne, M. Joucla, and A. A. Villaeys, Exciton
dynamics in pentacene thin films studied by pump-probe spectroscopy, Chem. Phys.
Lett., 241 (1995), p. 84.
[16] H. Marciniak, I. Pugliesi, B. Nickel, and S. Lochbrunner, Ultrafast singlet and triplet
dynamics in microcrystalline pentacene films, Phys. Rev. B, 79 (2009), p. 235318.
[17] V. K. Thorsmolle, R. D. Averitt, J. Demsar, D. L. Smith, S. Tretiak, R. L. Martin,
X. Chi, B. K. Crone, A. P. Ramirez, and A. J. Taylor, Photoexcited carrier relaxation
dynamics in pentacene probed by ultrafast optical spectroscopy: Influence
of morphology on relaxation processes, Physica B: Condensed Matter, 404 (2009),
p. 3127.
[18] A. Rao, M. W. B. Wilson, J. M. Hodgkiss, S. Albert-Seifried, H. Bassler, and R. H.
Friend, Exciton fission and charge generation via triplet excitons in pentacene/c60
bilayers, J. Am. Chem. Soc., 132 (2010), p. 12698.
67
[19] T. S. Kuhlman, J. Kongsted, K. V. Mikkelsen, K. B. Moller, and T. I. Solling, Interpretation
of the ultrafast photoinduced processes in pentacene thin films, J. Am.
Chem. Soc., 132 (2010), p. 3431.
[20] M. W. B. Wilson, A. Rao, J. Clark, R. S. S. Kumar, D. Brida, G. Cerullo, and R. H.
Friend, Ultrafast dynamics of exciton fission in polycrystalline pentacene, J. Am.
Chem. Soc., 133 (2011), p. 11830.
[21] A. Rao, M. W. B. Wilson, S. Albert-Seifried, R. Di Pietro, and R. H. Friend, Photophysics
of pentacene thin films: The role of exciton fission and heating effects, Phys.
Rev. B, 84 (2011), p. 195411.
[22] L. Ma, K. Zhang, C. Kloc, H. Sun, M. E. Michel-Beyerle, and G. G. Gurzadyan,
Singlet fission in rubrene single crystal: direct observation by femtosecond pump–
probe spectroscopy, Phys. Chem. Chem. Phys., 14 (2012), p. 8307.
[23] A. M. Muller, Y. S. Avlasevich, K. Mullen, and C. J. Bardeen, Evidence for exciton
fission and fusion in a covalently linked tetracene dimer, Chem. Phys. Lett., 421
(2006), p. 518.
[24] J. J. Burdett, D. Gosztola, and C. J. Bardeen, The dependence of singlet exciton
relaxation on excitation density and temperature in polycrystalline tetracene thin
films: kinetic evidence for a dark intermediate state and implications for singlet
fission., J. Chem. Phys., 135 (2011), p. 214508.
[25] W. L. Chan, M. Ligges, A. Jailaubekov, L. Kaake, L. Miaja-Avila, and X.-Y. Zhu,
Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron
transfer, Science, 334 (2011), p. 1541.
[26] W.-L. Chan, M. Ligges, and X.-Y. Zhu, The energy barrier in singlet fission can be
overcome through coherent coupling and entropic gain, Nature Chem., 4 (2012),
p. 840.
[27] A. Szabo, Modern Quantum Chemistry: Introduction To Advanced Electronic Structure
Theory Author: Attila Szabo, Neil S. Ostlund, Publ, Dover Publications, 1996.
68
[28] E. Runge and E. K. U. Gross, Density-functional theory for time-dependent systems,
Phys. Rev. Lett., 52 (1984), p. 997.
[29] E. C. Greyson, B. R. Stepp, X. Chen, A. F. Schwerin, I. Paci, M. B. Smith, A. Akdag,
J. C. Johnson, A. J. Nozik, J. Michl, and M. A. Ratner, Singlet exciton fission for solar
cell applications: Energy aspects of interchromophore coupling, J. Phys. Chem. B,
114 (2010), p. 14223.
[30] T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Microscopic theory of
singlet exciton fission. ii. application to pentacene dimers and the role of superexchange.,
J. Chem. Phys., 138 (2013), p. 114103.
[31] H. Yamagata, J. Norton, E. Hontz, Y. Olivier, D. Beljonne, J. L. Bredas, R. J. Silbey,
and F. C. Spano, The nature of singlet excitons in oligoacene molecular crystals., J.
Chem. Phys., 134 (2011), p. 204703.
[32] D. Beljonne, H. Yamagata, J. L. Bredas, F. C. Spano, and Y. Olivier, Charge-transfer
excitations steer the davydov splitting and mediate singlet exciton fission in pentacene,
Phys. Rev. Lett., 110 (2013), p. 226402.
[33] P. M. Zimmerman, Z. Zhang, and C. B. Musgrave, Singlet fission in pentacene
through multi-exciton quantum states, Nature Chem., 2 (2010), p. 648.
[34] T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Microscopic theory of singlet
exciton fission. i. general formulation., J. Chem. Phys., 138 (2013), p. 114102.
[35] P. E. Teichen and J. D. Eaves, A microscopic model of singlet fission, J. Phys. Chem.
B, 116 (2012), p. 11473.
[36] E. C. Greyson, J. Vura-Weis, J. Michl, and M. A. Ratner, Maximizing singlet fission
in organic dimers: Theoretical investigation of triplet yield in the regime of localized
excitation and fast coherent electron transfer, J. Phys. Chem. B, 114 (2010),
p. 14168.
69
[37] X. Feng, A. V. Luzanov, and A. I. Krylov, Fission of entangled spins: An electronic
structure perspective, J. Phys. Chem. Lett., 4 (2013), p. 3845.
[38] P. Hohenberg, Inhomogeneous electron gas, Phys. Rev., 136 (1964), p. B864.
[39] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation
effects, Phys. Rev., 140 (1965), p. A1133.
[40] C. Froese Fischer, General hartree-fock program, Comput. Phys. Commun., 43
(1987), p. 355.
[41] H. C. Longuet-Higgins and J. N. Murrell, The electronic spectra of aromatic
molecules v: the interaction of two conjugated systems, Proc. Phys. Soc. A, 68
(1955), p. 601.
[42] N. Ishikawa, O. Ohno, Y. Kaizu, and H. Kobayashi, Localized orbital study on the
electronic structure of phthalocyanine dimers, J. Phys. Chem., 96 (1992), p. 8832.
[43] C. D. Sherrill and H. F. Schaefer, III, The configuration interaction method: Advances
in highly correlated approaches, Elsevier, 1999, p. 143.
[44] J. Olsen, B. O. Roos, P. Jo̸rgensen, and H. J. A. Jensen, Determinant based configuration
interaction algorithms for complete and restricted configuration interaction
spaces, J. Chem. Phys., 89 (1988), p. 2185.
[45] N. Renaud, P. A. Sherratt, and M. A. Ratner, Mapping the relation between stacking
geometries and singlet fission yield in a class of organic crystals, J. Phys. Chem.
Lett., 4 (2013), p. 1065.
[46] D. Yaron, Nonlinear optical response of conjugated polymers: Essential excitations
and scattering, Phys. Rev. B, 54 (1996), p. 4609.
[47] R. P. Muller, Pyquante, version 1.6.4, http://pyquante.sourceforge.net/, 2009.
[48] J. A. Pople, Electron interaction in unsaturated hydrocarbons, Trans. Faraday Soc.,
49 (1953), p. 1375.
70
[49] R. Pariser and R. G. Parr, A semi-empirical theory of the electronic spectra and
electronic structure of complex unsaturated molecules. ii, J. Chem. Phys., 21 (2004),
p. 767.
[50] S. K. Ignatov, A. G. Razuvaev, V. N. Kokorev, and Y. A. Aleksandrov, Semiempirical
calculation of two-electron integrals using bipolar expansion of the ohno
potential, J. Struct. Chem., 36 (1995), p. 538.
[51] N. E. Geacintov, J. Burgos, M. Pope, and C. Strom, Heterofission of pentacene excited
singlets in pentacene-doped tetracene crystals, Chem. Phys. Lett., 11 (1971),
p. 504.
[52] L. Sebastian, G. Weiser, and H. Bassler, Charge transfer transitions in solid
tetracene and pentacene studied by electroabsorption, Chem. Phys., 61 (1981),
p. 125.
[53] R. M. Hochstrasser, Theory of molecular excitons., J. Am. Chem. Soc., 86 (1964),
p. 2313.
[54] Z. Shuai, D. Beljonne, R. Silbey, and J. Bredas, Singlet and triplet exciton formation
rates in conjugated polymer light-emitting diodes, Phys. Rev. Lett., 84 (2000), p. 131.
[55] H.-C. Lin and B.-Y. Jin, Three-dimensional through-space/through-bond delocalization
in cyclophane systems: A molecule-in-molecule approach, J. Phys. Chem.
A, 112 (2008), p. 2948.
[56] N. Makri, E. Sim, D. E. Makarov, and M. Topaler, Long-time quantum simulation
of the primary charge separation in bacterial photosynthesis., Proc. Natl. Acad. Sci.
U.S.A., 93 (1996), p. 3926.
[57] M. Bixon and J. Jortner, Electron transfer via bridges, J. Chem. Phys., 107 (1997),
p. 5154.
71
[58] R. H. Goldsmith, M. R. Wasielewski, and M. A. Ratner, Electron transfer in multiply
bridged donor-acceptor molecules: Dephasing and quantum coherence., J. Phys.
Chem. B, 110 (2006), p. 20258.
[59] M. Zarea, D. Powell, N. Renaud, M. R. Wasielewski, and M. A. Ratner, Decoherence
and quantum interference in a four-site model system: mechanisms and turnovers.,
J. Phys. Chem. B, 117 (2013), p. 1010.
[60] T. Zeng, R. Hoffmann, and N. Ananth, The low-lying electronic states of pentacene
and their roles in singlet fission., J. Am. Chem. Soc., 136 (2014), p. 5755.
[61] Y. Tomkiewicz, R. P. Groff, and P. Avakian, Spectroscopic approach to energetics of
exciton fission and fusion in tetracene crystals, J. Chem. Phys., 54 (2003), p. 4504.
[62] J. J. Burdett, A. M. Muller, D. Gosztola, and C. J. Bardeen, Excited state dynamics
in solid and monomeric tetracene: The roles of superradiance and exciton fission,
J. Chem. Phys., 133 (2010), p. 144506.
[63] Y. C. Cheng, R. J. Silbey, D. A. da Silva Filho, J. P. Calbert, J. Cornil, and J. L.
Bredas, Three-dimensional band structure and bandlike mobility in oligoacene single
crystals: A theoretical investigation, J. Chem. Phys., 118 (2003), p. 3764.
[64] I. Paci, J. C. Johnson, X. Chen, G. Rana, D. Popović, D. E. David, A. J. Nozik, M. A.
Ratner, and J. Michl, Singlet fission for dye-sensitized solar cells: Can a suitable
sensitizer be found?, J. Am. Chem. Soc., 128 (2006), p. 16546.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56514-
dc.description.abstract單重態激發子分裂,一個經由吸收單一光子產生兩個獨立三重態激
發子的光化學現象,由於具有應用於高效能太陽能發電材料的潛力而
備受囑目。然而,儘管大量的研究資源投入於此領域之中,科學家們
對於單重態激發子分裂的反應機制依然沒有達成共識,並且尚存在著
許多未解決的疑問。例如:驅使單重態激發子分裂發生的因素為何,
以及當中牽涉到的激發態波函數真正的性質等等。
從電子結構的觀點著手,我們利用非絕熱基底近似成功地展示了激發
態中電子躍遷圖像,以及利用有限電子活躍空間的電子組態交互作用
(考慮單電子及雙電子激發)計算闡述了多重組態效應在多並苯的電子
結構中扮演著相當重要的角色,尤其是來自雙重單重態電子組態的影
響。
藉由建立弗朗凱爾激發態-電荷轉移態-雙重單重態的三能態模型,我
們成功地解釋實驗上觀測到在飛秒尺度下發生的單重態激發子分裂,
並說明了其是藉由強烈的超交換耦合常數以及近乎重能態的條件而發
生的。我們發現到在影響單重態激發子分裂的因素之中,電荷轉移能
態的能階位置大幅地影響著超交換耦合常數的數值,因此被認為是最
重要的因素。因此,除了過去考慮第一單重態與兩倍三重態之能量差
以外,我們提出電子轉移態能階的降低應該也要納入判斷單重態激發
子分裂發生與否的考量之中。
另外,藉由從分子軌域對電子組態交互作用的分析,我們可以從單分
子的分子軌蜮來瞭解二重體中兩個分子的相對位置會對單重態激發子
分裂帶來什麼樣的影響。此方法不但能省去電子組態交互作用昂貴的
計算資源而提供對電子結構定性的分析,也能進而從分子設計的觀點
去提出發生高效率單重態激發子分裂的分子設計方向。
zh_TW
dc.description.abstractBecause of the promising potential in the high efficiency solar cell, singlet exciton fission, the molecular analogue of multiexciton generation resulting in two independent triplet excitons by absorbing a single photon, has attracted
increasing attention recently. Although the striking research works are advancing, the mechanism of SF is still controversial, and some open questions remain, e.g., the key parameters manipulating the occurrence of SF and the excited state wavefunctions involved in it. From an electronic structure point of view, we construct an approximate diabatic basis to unambiguously interpret the character of the excited states, by applying the restricted active space
configuration interaction single and double approach to show the importance of considering multi-configuration effects in polyacene dimers, especially the key role of double-excitation configurations. Using a three-state model, strong superexchange effective coupling and the near degeneracy condition that explain the ultrafast SF mechanism are obtained. We demonstrate that a crucial factor is the energetic position of the charge transferred diabatic state,
which remarkably controls the amplitude of the effective coupling. Therefore, in addition to the near degeneracy of the lowest lying singlet exciton and the double-triplet state, we conclude that the lowering of the charge transferred diabatic state energy should also be considered as a key factor for the design of hign efficiency SF materials. Finally we show that dominant interactions
controlling SF efficiency in a dimer can be decomposed into Conlomb interaction between monomer molecular orbitals. Trough molecular orbital based analysis of configuration interactions involved in the SF process, the driving
force of SF can be determined from the relative orientation of monomers, providing an effective method to survey potential molecules and further guideline to the design principle of high SF dye-sensitizing materials.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:32:26Z (GMT). No. of bitstreams: 1
ntu-103-R01223138-1.pdf: 1472099 bytes, checksum: f281c9e4d9538bd35b68178bb1476913 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
致謝ii
中文摘要iv
Abstract v
Contents vii
List of Figures x
List of Tables xiii
1 Introduction 2
1.1 Singlet Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Experimental Development . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Theoretical Development . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Method 10
2.1 Oligoacene Model Systems . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Hartree-Fock Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Localization of Molecular Orbitals . . . . . . . . . . . . . . . . . . . . . 11
2.4 Restricted Active Space Configuration Interaction Single and Double (RASCISD)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
vii
3 Semi-empirical Calculation 19
3.1 Pariser–Parr–Pople (PPP) Model . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Electronic Structure of Pentacene Dimer . . . . . . . . . . . . . . . . . . 20
3.3 Dependence of the Electronic Structure on the Face-to-face Distance . . . 22
3.4 Electronic Structure Dependence on Molecular Size . . . . . . . . . . . . 22
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 ab initio Study of SF in Pentacene Dimer 25
4.1 Direct Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 RAS-CISD Low-lying Electronic Excitations . . . . . . . . . . . . . . . 26
4.3 Three-state Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Size of Active Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Singlet Fission in Oligoacene Series 34
5.1 RAS-CISD Calculation of Anthracene & Tetracene Dimers . . . . . . . . 34
5.2 Effective SF Hamiltonian for oligoacene Dimers . . . . . . . . . . . . . . 37
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 Dependence of Electronic Structure on Geometrical Effect 41
6.1 Molecular Structure Effect . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Effective SF Coupling Dependence on the Geometrical Effect . . . . . . 45
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7 Molecular Orbital Perspective on Effective SF Coupling 47
7.1 Estimation of Effective SF Coupling . . . . . . . . . . . . . . . . . . . . 47
7.2 Electronic Coupling from MO Interactions . . . . . . . . . . . . . . . . 50
7.3 State Energy from MO Interactions . . . . . . . . . . . . . . . . . . . . . 56
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8 Conclusion 58
viii
A Appendix 61
A.1 Visualization of Localized MOs . . . . . . . . . . . . . . . . . . . . . . 61
Bibliography 66
dc.language.isozh-TW
dc.subject交替烴zh_TW
dc.subject多並苯zh_TW
dc.subject發色團設計zh_TW
dc.subject超快光譜zh_TW
dc.subject激發子分裂zh_TW
dc.subjectchromophore designen
dc.subjectpolyacenesen
dc.subjectultrafast spectroscopyen
dc.subjectexciton fissionen
dc.subjectalternant hydocarbonsen
dc.title多並苯二聚體系統中單重態激發子分裂之理論計算研究zh_TW
dc.titleTheoretical Study of Singlet Fission in Polyacene Dimersen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee金必耀(Bih-Yaw Jin),許昭萍(Chao-Ping Hsu)
dc.subject.keyword交替烴,多並苯,發色團設計,超快光譜,激發子分裂,zh_TW
dc.subject.keywordalternant hydocarbons,polyacenes,chromophore design,ultrafast spectroscopy,exciton fission,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2014-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved