Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56492
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林銘郎
dc.contributor.authorSheng-Shin Chuen
dc.contributor.author朱聖心zh_TW
dc.date.accessioned2021-06-16T05:31:16Z-
dc.date.available2014-08-17
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citationAbe, S., van Gent, H. and Urai, J. L. (2011). 'DEM simulation of normal faults in cohesive materials.' Tectonophysics 512(1-4): 12-21.
Aldrich, M. and Dethier, D. P. (1990). 'Stratigraphic and tectonic evolution of the northern Espanola basin, Rio Grande rift, New Mexico.' Geological Society of America Bulletin 102(12): 1695-1705.
Bray, J., Seed, R., Cluff, L. and Seed, H. (1994). 'Earthquake Fault Rupture Propagation through Soil.' Journal of Geotechnical Engineering 120(3): 543-561.
Bray, J. D. (1990). The effects of tectonic movements on stresses and deformations in earth embankments Ph D in Engineering, University of California, Berkeley.
Bray, J. D. (2001).'Developing mitigation measures for the hazards associated with earthquake surface fault rupture.' Workshop on seismic fault-induced failures—possible remedies for damage to urban facilities. University of Tokyo Press, 55-79.
Bray, J. D. and Kelson, K. I. (2006). 'Observations of surface fault rupture from the 1906 earthquake in the context of current practice.' Earthquake Spectra 22: S69-S89.
Bray, J. D., Seed, R. B. and Seed, H. B. (1994). 'Analysis of earthquake fault rupture propagation through cohesive soil.' Journal of Geotechnical Engineering 120(3): 562-580.
Cardozo, N. and Allmendinger, R. W. (2009). 'SSPX: A program to compute strain from displacement/velocity data.' Computers & Geosciences 35(6): 1343-1357.
Castelltort, S., Pochat, S. and Van den Driessche, J. (2004). 'How reliable are growth strata in interpreting short-term (10 s to 100 s ka) growth structures kinematics?' Comptes Rendus Geoscience 336(2): 151-158.
Chang, Y.-Y., Lee, C.-J., Huang, W.-C., Huang, W.-J., Lin, M.-L., Hung, W.-Y. and Lin, Y.-H. (2013). 'Use of centrifuge experiments and discrete element analysis to model the reverse fault slip.' International Journal of Civil Engineering 11(2): 79-89.
Chen, C. T., Lee, J. C., Chan, Y. C. and Lu, C. Y. (2010). 'Growth Normal Faulting at the Western Edge of the Metropolitan Taipei Basin since the Last Glacial Maximum, Northern Taiwan.' Terrestrial Atmospheric and Oceanic Sciences 21(3): 409-428.
Cheng, C. T., Lee, C. T., Lin, P. S., Lin, B. S., Tsai, Y. B. and Chiou, S. J. (2010). 'Probabilistic Earthquake Hazard in Metropolitan Taipei and Its Surrounding Regions.' Terrestrial Atmospheric and Oceanic Sciences 21(3): 429-446.
Chu, S. S., Lin, M. L., Huang, W. C., Liu, H. C. and Chan, P. C. (2013). 'Laboratoy simulation of shear band development in a growth normal fault.' Journal of GeoEngineering 8: 19-26.
Cole Jr, D. A. and Lade, P. V. (1984). 'Influence zones in alluvium over dip-slip faults.' Journal of Geotechnical Engineering 110(5): 599-615.
Cundall, P. (1971). 'A computer model for simulating progressive, large scale movements in blocky rock systems Proceedings of the international symposium on rock fractures.' Nancy, France II-8: 1-12.
Cundall, P. A. (1989). 'Numerical experiments on localization in frictional materials.' Ingenieur-archiv 59(2): 148-159.
Cundall, P. A. and Strack, O. D. (1979). 'A discrete numerical model for granular assemblies.' Geotechnique 29(1): 47-65.
Egholm, D. L., Sandiford, M., Clausen, O. R. and Nielsen, S. B. (2007). 'A new strategy for discrete element numerical models: 2. Sandbox applications.' Journal of Geophysical Research-Solid Earth 112(B5).
Ever Transit International Co., L. (1999). The Shanchiao Fault investigation report of C. K. S. airport to Taipei MRT system construction project.
Gardner, J. N. (1990). Results from Seismic Hazards Trench# 1 (SHT-1): Los Alamos Seismic Hazards Investigations, Los Alamos National Laboratory.
Gawthorpe, R. and Hardy, S. (2002). 'Extensional fault-propagation folding and base-level change as controls on growth-strata geometries.' Sedimentary Geology 146(1-2): 47-56.
Gawthorpe, R. L., Sharp, I., Underhill, J. R. and Gupta, S. (1997). 'Linked sequence stratigraphic and structural evolution of propagating normal faults.' Geology 25(9): 795-798.
Hardy, S. (2011). 'Cover deformation above steep, basement normal faults: Insights from 2D discrete element modeling.' Marine and Petroleum Geology 28(5): 966-972.
Hardy, S. (2013). 'Propagation of blind normal faults to the surface in basaltic sequences: Insights from 2D discrete element modelling.' Marine and Petroleum Geology 48(0): 149-159.
Hashimoto, C. and Matsu'Ura, M. (2006). '3-D simulation of tectonic loading at convergent plate boundary zones: Internal stress fields in northeast Japan.' pure and applied geophysics 163(9): 1803-1817.
Huang, S. Y., Rubin, C. M., Chen, Y. G. and Liu, H. C. (2007). 'Prehistoric earthquakes along the Shanchiao fault, Taipei Basin, northern Taiwan.' Journal of Asian Earth Sciences 31(3): 265-276.
Huene, R. v., Weinrebe, W. and Heeren, F. (1999). 'Subduction erosion along the North Chile margin.' Journal of geodynamics 27(3): 345-358.
Hus, R., Acocella, V., Funiciello, R. and De Batist, M. (2005). 'Sandbox models of relay ramp structure and evolution.' Journal of Structural Geology 27(3): 459-473.
Imanishi, K., Ando, R. and Kuwahara, Y. (2012). 'Unusual shallow normal‐faulting earthquake sequence in compressional northeast Japan activated after the 2011 off the Pacific coast of Tohoku earthquake.' Geophysical Research Letters 39(9).
Itasca Consulting Group, I. (2004). Particle Flow Code in 2-Dimensions: Command Reference version 3.1. Minneapolis.
Japan Earthquake Research Institute (2011). The surface earthquake fault of the 11th April 2011 earthquake in Hamadoori Fukushima pref.
Johansson, J. and Konagai, K. (2004).'Fault surface rupture experiments: a comparison of dry and saturated soils.' Proceeding of 27th Symposium on Earthquake Engineering, JSCE, Paper.
Kelson, K. I., Kang, K. H., Page, W. D., Lee, C. T. and Cluff, L. S. (2001). 'Representative styles of deformation along the Chelungpu fault from the 1999 Chi-Chi (Taiwan) earthquake: Geomorphic characteristics and responses of man-made structures.' Bulletin of the Seismological Society of America 91(5): 930-952.
Konagai, K. (2005). 'Data archives of seismic fault-induced damage.' Soil Dynamics and Earthquake Engineering 25(7-10): 559-570.
Lade, P., Cole, D. and Cummings, D. (1984). 'Multiple Failure Surfaces Over Dip‐Slip Faults.' Journal of Geotechnical Engineering 110(5): 616-627.
Lazarte, C. and Bray, J. (1996). 'A study of strike-slip faulting using small-scale models.' ASTM geotechnical testing journal 19(2): 118-129.
Lee, C. T. and Wang, Y. (1988).'Quaternary stress changes in northern Taiwan and their tectonic implication.' Proc. Geol. Soc. China, 154-168.
Lee, J., Hamada, M., Tabuchi, G. and Suzuki, K. (2004).'Prediction of fault rupture propagation based on physical model tests in sandy soil deposit.' Proceedings of the 13th world conference on earthquake engineering, paper.
Lee, J. W. and Hamada, M. (2005). 'An experimental study on earthquake fault rupture propagation through a sandy soil deposit.' STRUCTURAL ENGINEERING EARTHQUAKE ENGINEERING 22(1): 1s.
Lee, W. J. and Hamada, M. (2005). 'An experimental study on earthquake fault rupture propagation through a sandy soil deposit.' Journal of Structure Engineering/Earthquake Engineering JSCE 22: 1s-13s.
Lin, C. Z. (2005).'Shanchiao Fault and Geological Structure of West Edge of Taipei Basin.' Symposium on Volcanic Activities and the Shanchiao Fault in the Taipei Metropolis, 191-199.
Loveless, J. P. and Meade, B. J. (2011). 'Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW= 9.0 Tohoku‐oki earthquake.' Geophysical Research Letters 38(17).
Lu, C. Y., Angelier, J., Chu, H. T. and Lee, J. C. (1995). 'Contractional, Transcurrent, Rotational and Extensional Tectonics - Examples from Northern Taiwan.' Tectonophysics 246(1-3): 129-146.
McCalpin, J. P. (2005). 'Late Quaternary activity of the Pajarito fault, Rio Grande rift of northern New Mexico, USA.' Tectonophysics 408(1): 213-236.
Moosavi, S., Jafari, M., Kamalian, M. and Shafiee, A. (2010). 'Experimental investigation of reverse fault rupture–rigid shallow foundation interaction.' International Journal of Civil Engineering 8(2): 85-98.
Morgan, J. K. (2004). 'Particle dynamics simulations of rate-and state-dependent frictional sliding of granular fault gouge.' pure and applied geophysics 161(9-10): 1877-1891.
Nicol, A., Walsh, J., Berryman, K. and Nodder, S. (2005). 'Growth of a normal fault by the accumulation of slip over millions of years.' Journal of Structural Geology 27(2): 327-342.
Nollet, S., Vennekate, G. J. K., Giese, S., Vrolijk, P., Urai, J. L. and Ziegler, M. (2012). 'Localization patterns in sandbox-scale numerical experiments above a normal fault in basement.' Journal of Structural Geology 39: 199-209.
Patton, T. L. (2005). 'Sandbox models of downward-steepening normal faults.' Aapg Bulletin 89(6): 781-797.
Place, D. and Mora, P. (2001). Numerical simulation of localisation phenomena in a fault zone. Microscopic and Macroscopic Simulation: Towards Predictive Modelling of the Earthquake Process, Springer: 1821-1845.
Pochat, S., Castelltort, S., Choblet, G. and Van Den Driessche, J. (2009). 'High-resolution record of tectonic and sedimentary processes in growth strata.' Marine and Petroleum Geology 26(8): 1350-1364.
Ramsay, J. G. and Huber, M. I. (1983). The Techniques of Modern Structural Geology.
Resources Engineering Services, I. (1999). Road gallery range fault investigation report of Taipei MRT Xinzhuang line DK196 design case.
Reyners, M. and McGinty, P. (1999). 'Shallow subduction tectonics in the Raukumara Peninsula, New Zealand, as illuminated by earthquake focal mechanisms.' Journal of Geophysical Research: Solid Earth (1978–2012) 104(B2): 3025-3034.
Roberts, A., Yielding, G. and Freeman, B. (1990). 'Conference Report - the Geometry of Normal Faults.' Journal of the Geological Society 147: 185-187.
Roth, W., Scott, R. and Austin, I. (1981). 'Centrifuge modeling of fault propagation through alluvial soils.' Geophysical Research Letters 8(6): 561-564.
Roth, W. H., Sweet, J. and Goodman, R. E. (1982). Numerical and physical modeling of flexural slip phenomena and potential for fault movement. Ingenieurgeologie und Geomechanik als Grundlagen des Felsbaues/Engineering Geology and Geomechanics as Fundamentals of Rock Engineering, Springer: 27-46.
Saltzer, S. D. (1992). 'Boundary-Conditions in Sandbox Models of Crustal Extension - an Analysis Using Distinct Elements.' Tectonophysics 215(3-4): 349-362.
Sanford, A. R. (1959). 'Analytical and experimental study of simple geologic structures.' Geological Society of America Bulletin 70(1): 19-52.
Scott, R. F. and Schoustra, J. J. (1974). 'Nuclear Power Plant Siting on Deep Alluvium.' Journal of the Geotechnical Engineering Division 100(4): 449-459.
Seyferth, M. and Henk, A. (2006). 'A numerical sandbox: high-resolution distinct element models of halfgraben formation.' International Journal of Earth Sciences 95(2): 189-203.
Stone, K. and Wood, D. (1992). 'Effects of dilatancy and particle size observed in model tests on sand.' Soils and foundations 32(4): 43-57.
Tani, K., Ueta, K. and Onizuka, N. (1994). 'Scale effect of Quaternary ground deformation observed in model tests of vertical fault.' Proceeding of 29th Japan National Conference on SMFE: 1359-1362.
Taylor, S. K., Nicol, A. and Walsh, J. J. (2008). 'Displacement loss on growth faults due to sediment compaction.' Journal of Structural Geology 30(3): 394-405.
Teng, L. S. (1996). 'Extensional collapse of the northern Taiwan mountain belt.' Geology 24(10): 949-952.
Teng, L. S., Yuan, P. B., Chen, P. Y., Peng, C. H., Lai, T. C., Fei, F. Y. and Liu, H. C. (1999). 'Lithostratigraphy of the Taipei Basin deposits.' Spec. Publ. Cent. Geol. Surv. 11: 41-66.
Turcotte, D. L. and Schubert, G. (2002). Geodynamics, Cambridge University Press.
Wang, J. H. (2008). 'Urban seismology in the Taipei Metropolitan Area: Review and prospective.' Terrestrial Atmospheric and Oceanic Sciences 19(3): 213-233.
Wang, Y., Yin, X., Ke, F.-j., Xia, M.-f. and Peng, K.-Y. (2000). 'Numerical simulation of rock failure and earthquake process on mesoscopic scale.' pure and applied geophysics 157(11-12): 1905-1928.
Wells, D. L. and Coppersmith, K. J. (1994). 'New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement.' Bulletin of the Seismological Society of America 84(4): 974-1002.
Wong, I., Kelson, K., Olig, S., Kolbe, T., Hemphill-Haley, M., Bott, J., Green, R., Kanakari, H., Sawyer, J. and Silva, W. (1995). 'Seismic hazards evaluation of the Los Alamos National Laboratory.' Unpublished consulting report prepared for Los Alamos National Laboratory by Woodward-Clyde Federal Services, Oakland, CA 3.
Yang, Y.-R., Hu, J.-C. and Lin, M.-L. (2014). 'Evolution of coseismic fault-related folds induced by the Chi–Chi earthquake: A case study of the Wufeng site, Central Taiwan by using 2D distinct element modeling.' Journal of Asian Earth Sciences 79, Part A(0): 130-143.
Yimsiri, S. and Soga, K. (2000). 'Micromechanics-based stress–strain behaviour of soils at small strains.' Geotechnique 50(5): 559-571.
Youngs, R. R., Arabasz, W. J., Anderson, R. E., Ramelli, A. R., Ake, J. P., Slemmons, D. B., McCalpin, J. P., Doser, D. I., Fridrich, C. J. and Swan, F. H. (2003). 'A methodology for probabilistic fault displacement hazard analysis (PFDHA).' Earthquake Spectra 19(1): 191-219.
Yu, S. B., Kuo, L. C., Punongbayan, R. S. and Ramos, E. G. (1999). 'GPS observation of crustal deformation in the Taiwan-Luzon region.' Geophysical Research Letters 26(7): 923-926.
中央社、蘋果日報、自由時報、聯合報、中國時報,(2011),山腳斷層延伸到東北角外海9月16日報導
石瑞銓、詹益湘、劉桓吉,(2004),山腳斷層於關渡平原之淺層震測調查, 經濟部中央地質調查所特刊。.
朱聖心、林銘郎、陳師賢、劉桓吉、鍾春富,(2007), '物理模型試驗與數值模擬結合機率式斷層位移危害度分析之應用—以山腳斷層為例',第十二屆大地工程學術研討會。
李宏輝,(2008),砂岩力學行為之微觀機制-以個別元素法探討,國立台灣大學土木工程研究所博士論文,臺北。
周坤賢,(1998),模型樁貫入砂土之行為及分析,國立台灣大學土木工程學研究所碩士論文,臺北。
林朝宗,(2001),'台北都會區地質環境',台北都會區地質災害研討會論文集,第 1.1-1.19 頁。
林朝宗,(2005),'山腳斷層與台北盆地西緣的地質構造',大台北地區山腳斷層與火山活動研討會,經濟部中央地質調查所, 191-199。
林銘郎、鄭富書、王鴻基、王景平、鍾春富、張芳銘、蔡維哲、許永欣、黃俊傑,(2004),台北斷層引致之上覆土層變形及其對潛盾隧道之影響,嚴慶齡工業研究中心研究報告,亞新工程顧問公司委託。
粘為東,(2010),以PFC2D模擬砂土直剪實驗中之剪動帶及應用之研究,國立台灣大學土木工程研究所碩士論文,臺北。
經濟部中央地質調查所,(2012),重要活動斷層構造特性調查研究活動斷層近地表變形特性研究(2/4),經濟部中央地質調查所報告第9號。
陳冠宇,(2014),台灣北部由造山帶至弧後張裂之陸域及海域構造研究,國立中央大學地球科學系博士論文,中壢。
陳師賢,(2007),結合物理試驗與數值模型模擬山腳斷層上覆土層變形行為,國立台灣大學土木工程研究所碩士論文,臺北。
劉桓吉、蘇泰維、李錦發、紀宗吉、林朝宗,(2000), '山腳斷層之活動性及其對工程安全之影響',經濟部89年度研究發展專題。
蔣佳興,(2006),正斷層錯移對上覆砂土層之變形行為探討,國立台灣大學土木工程研究所碩士論文,臺北。
鍾春富,(2007),逆斷層錯動引致上覆土層變形行為及對結構物影響之研究,國立台灣大學土木工程研究所博士論文,臺北。
鍾春富、林銘郎,(2004),'機率式斷層位移危害度分析初探',岩盤工程研討會論文集。
蘇泰維、劉桓吉、劉憲德、黃健政,(2003),'台北盆地西緣山腳斷層調查研究初步成果',91年度中央地質調查所年報。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56492-
dc.description.abstract活動斷層錯動引致之地震,因地盤錯動所產生永久或塑性變形,會引致結構物及重要的維生管線嚴重變形而損壞。臺北盆地西緣的山腳斷層屬於高活動度之正斷層,山腳斷層之錯動將造成覆蓋於臺北盆地的第四紀沉積物變形,進而造成影響區域內之結構物或交通建設及維生管線(油、氣、輸水管...等)破壞。
由鑽孔及定年資料推斷山腳斷層有生長斷層 (growth fault) 現象,此種斷層錯動所造成上覆蓋沉積層之變形行為,與數值模擬單一覆土層錯動影響之異同為本研究探討重點。本研究建置砂箱物理模型以無凝聚性砂土進行模擬山腳斷層在有生長斷層情形下,剪切帶發展範圍及地表差異變形之影響,並針對生長正斷層分次錯動的影響進行試驗。實驗結果顯示正斷層如含有生長斷層,當基盤錯動時,剪切帶會沿原覆土層之剪切帶弱面向上發展。且此剪切帶會比單一覆土層,更為快速發展至地表,錯移率(基盤錯移量/下盤覆土層厚度)僅需單一覆土層之約1/3(或5/16)。本研究以分離元素法二維分析程式(PFC2D)進行砂箱試驗成果之模擬,模擬生長正斷層錯動對上覆土層之剪切帶發展速度及影響範圍。模擬結果顯示與砂箱試驗成果甚為接近。
依據上述試驗結果,本研究建立五股剖面的幾何模擬模型,以含生長層之上盤厚度H係以原來上盤厚度之5/16計算為新的上盤厚度,推算含生長斷層平均錯動量為2.5m之錯移率與斷層尖端發展位置之關係,推論得出當臺北盆地第四紀沉積物厚度低於510m時,含生長層之斷層錯動時上覆土層之剪切帶,均會影響至地表,而當覆土層厚度接近680m時,剪切帶之影響深度為地表下約20餘公尺,約為656m。可推論:含生長斷層之平均錯動量越大,其斷層尖端發展位置會越接近地表,亦即剪切帶的發展會越接近地表。
且經PFC2D進行第四季沉積物厚達679m的五股剖面模擬,亦顯示生長正斷層錯動2.5m後,剪應變亦會發生在近地表處。因此針對山腳斷層之週邊之重大工程設計分析,應需考慮生長斷層之影響,進行鑽孔調查是否有生長斷層之證據,生長斷層之剪切帶發展代表最近一次斷層錯動對上覆土層之影響,因此剪切帶之可能範圍內,須特別加以注意。
zh_TW
dc.description.abstractA fault slip can cause the deformation of shallow soil layers and destroy infrastructures. The Shanchiao Fault on the west side of the Taipei Basin is one such fault. The activities of the Shanchiao Fault have caused the quaternary sediment beneath the Taipei Basin to become deformed, damaging structures, traffic construction, and utility lines in the area.
Data on geological drilling and dating have been used to determine that a growth fault exists in the Shanchiao Fault. In an experiment, a sandbox model was built using noncohesive sandy soil to simulate the existence of a growth fault in the Shanchiao Fault and forecast the effect of the growth fault on shear-band development and ground differential deformation. The experimental results indicated that when a normal fault contains a growth fault at the offset of the base rock, the shear band develops upward beside the weak side of the shear band of the original-topped soil layer, and surfaces considerably faster than that of the single-topped layer. The offset ratio required is approximately one-third that of the single-cover soil layer. In this study, a numerical simulation of the sandbox experiment was conducted using a discrete element method program, PFC2D, to simulate the upper-covering sand layer shear-band development pace and the scope of a growth normal fault slip. The simulation results indicated an outcome similar to that of the sandbox experiment.
According to the above test results, the Wuku profile geometric simulation model established in this study, the new hanging wall thickness H is 5/16 of the original thickness in every sedimentary strata of the growth normal fault. The simulation results show that the more average offset will lead the shear-band propagation reached close to the ground surface.
The PCF2D program was used to create a model for simulating SCF-2 and WK-1E profiles and the shear-band propagation reached the particle surface in the final 2.5-m slip of this growth normal fault numerical model. The simulation results can be applied to the design of construction projects near fault zones.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:31:16Z (GMT). No. of bitstreams: 1
ntu-103-D94521022-1.pdf: 20535714 bytes, checksum: 3019099dd4266c2744f889f8aef4e548 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XVII
符號表 XVIII
第一章 緒論 1-1
1.1 研究動機 1-1
1.2 研究目的 1-3
1.3 研究方法及流程 1-4
1.4 研究內容 1-5
第二章 文獻回顧 2-1
2.1 現地調查 2-1
2.1.1 正斷層活動 2-2
2.1.2 山腳斷層現地調查研究 2-3
2.1.3 生長斷層 2-5
2.1.4 正斷層錯動量的評估 2-6
2.2 物理模型試驗 2-7
2.2.1 1g模型試驗 2-8
2.2.2 離心機模型試驗 2-9
2.3 數值分析 2-10
2.4 研究議題 2-14
第三章 研究方法 3-1
3.1 砂箱物理模型 3-2
3.1.1 樹林剖面簡介 3-2
3.1.2 砂箱模型設置 3-2
3.1.3 砂箱試驗之材料性質 3-4
3.1.4 砂箱試驗方法及過程 3-5
3.2 砂箱試驗數值模擬 3-6
3.2.1 數值模擬方法簡介 3-7
3.2.2 PFC程式概述 3-7
3.2.3 利用應變橢圓及MatLab程式進行剪應變計算 3-10
3.2.4 模擬砂箱試驗之數值分析模型及參數設定 3-14
3.3 現地剖面數值模擬 3-17
3.3.1 現地剖面簡介 3-17
3.3.2 模擬五股剖面之數值分析模型及參數設定 3-18
3.4 研究規劃 3-20
3.5 研究相關名詞定義 3-21
第四章 正斷層及生長正斷層錯動之砂箱試驗 4-1
4.1 Type1正斷層砂箱試驗 4-1
4.1.1 Type1正斷層砂箱試驗結果 4-3
4.2 Type2分階正斷層砂箱試驗 4-3
4.2.1 Type2分階正斷層砂箱試驗結果 4-4
4.3 Type3生長正斷層砂箱試驗 4-5
4.3.1 Type3生長正斷層砂箱試驗結果 4-5
4.4 正斷層及生長正斷層錯動之砂箱試驗結果討論 4-5
第五章 正斷層及生長正斷層錯動砂箱試驗之數值分析及應用於現地剖面錯動的幾何模擬 5-1
5.1 正斷層砂箱試驗之數值模擬 5-1
5.1.1 砂箱試驗之數值模型及參數 5-1
5.2 生長正斷層砂箱試驗之數值模擬 5-3
5.3 砂箱試驗之數值模擬與砂箱試驗結果之比對 5-4
5.4 生長斷層之砂箱試驗及數值分析結果應用於現地剖面錯動之幾何模擬 5-5
第六章 現地尺度的生長正斷層數值分析 6-1
6.1 樹林剖面生長正斷層數值分析 6-1
6.2 五股剖面生長正斷層數值分析 6-5
第七章 結論與建議 7-1
7.1 結論 7-1
7.2 建議 7-3
參考文獻 R-1
附錄A 正斷層砂箱數值模型程式碼 A-1
附錄B 正斷層砂箱數值模型網格設置程式碼 A-5
附錄C 砂箱數值模型產生應變橢圓網格程式碼 A-6
附錄D 接續正斷層砂箱數值模型產生生長斷層程式碼 A-7
附錄E-1 Matlab程式計算應變橢圓率參數輸入程式碼 A-9
附錄E-2 Matlab程式讀取PFC輸出紀錄程式碼 A-11
附錄E-3 Matlab程式計算橢圓率程式碼 A-13
附錄E-4 Matlab程式依橢圓率分級剪應變程式碼 A-26
附錄F-1 砂箱數值模型參數FISH程式碼 A-33
附錄F-2 現地尺度數值模型參數FISH程式碼 A-48
附錄G-1 現地尺度正斷層數值模型程式碼 A-62
附錄G-2 現地尺度數值模型產生生長斷層程式碼 A-66
附錄G-3 現地尺度數值模型一次執行生長斷層程式碼(遇有中斷時,可接續執行) A-68
附錄H 博士學位考試口試委員提問與回覆對照表…………………A-70
dc.language.isozh-TW
dc.title生長正斷層錯動引致覆土層剪切帶發展之研究zh_TW
dc.titleShear Band Development of Overburden Soil Induced by Growth Normal Fault Slipen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee李崇正,黃燦輝,李錫堤,董家鈞
dc.subject.keyword生長正斷層,分離元素法PFC2D,山腳斷層,臺北盆地,zh_TW
dc.subject.keywordGrowth Normal Fault,Discrete Element Method PFC2D,Shanchiao Fault,Taipei Basin,en
dc.relation.page242
dc.rights.note有償授權
dc.date.accepted2014-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
20.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved