請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56489完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪弘 | |
| dc.contributor.author | Chih-Yen Liu | en |
| dc.contributor.author | 劉智彥 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:31:07Z | - |
| dc.date.available | 2016-10-20 | |
| dc.date.copyright | 2014-10-20 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-13 | |
| dc.identifier.citation | F. Chiaromonte, R. D. Cook, and B. Li. Sufficient dimension reduction in regressions with categorical predictors. The Annals of Statistics, 30:475–497, 2002.
R. D. Cook. Regression graphics: Ideas for studying regressions through graphics. Wiley New York, 1998. R. D. Cook and Frank Critchley. Identifying regression outliers and mixtures graphically. Journal of the American Statistical Association, 95:781–794, 2000. R. D. Cook and B. Li. Dimension reduction for the conditional mean in regression. The Annals of Statistics, 30:455–474, 2002. R. D. Cook and S. Weisberg. Comment on “sliced inverse regression for dimension reduction”. Journal of the American Statistical Association, 86:328–332, 1991. X. Ding and Q. Wang. Fusion-refinement procedure for dimension reduction with missing response at random. Journal of the American Statistical Association, 106:1193–1207, 2011. M. L. Eaton. A characterization of spherical distribution. Multivariate Analysis, 20:272–276, 1986. J. Hooper. Simultaneous equations and canonical correlation theory. Econometrica, 27:245–256, 1959. H. Hung. A two-stage dimension reduction method for transformed response and its applications. Biometrika, 99:865–877, 2012. Pearl J. Direct and indirect effects. Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, pages 411–420, 2001. K. C. Li. Sliced inverse regression for dimension reduction (with discussion). Journal of the American Statistical Association, 86:316–327, 1991. K. C. Li, J. L. Wang, and C. H. Chen. Dimension reduction for censored regression data. The Annals of Statistics, 27:1–23, 1999. L. Li. Survival prediction of diffuse large-b-cell lymphoma based on both clinical and gene expression information. Bioinformatics, 22:466–471, 2006. Wen S. Li, B. and L. Zhu. On a projective resampling method for dimension reduction with multivariate responses. Journal of the American Statistical Association, 103:1177– 1186, 2008. P. A. Naik and C. L. Tsai. Constrained inverse regression for incorporating prior information. Journal of the American Statistical Association, 100:204–211, 2005. A. Rencher. Methods of multivariate analysis. Wiley New York, 2002. J. Smith, J. Everhart, W. Dickson, W. Knowler, and R. Johannes. Using the adap learning algorithm to forecast the onset of diabetes mellitus. Proceedings of the Symposium on Computer Applications and Medical Care, 9:261–265, 1988. Y. Xia, H. Tong, W. K. Li, and L. X. Zhu. An adaptive estimation of dimension reduction space. Journal of the Royal Statistical Society, Ser. B, 64:363–410, 2002. Z. Ye and R. E. Weiss. Using the bootstrap to select one of a new class of dimension reduction methods. Journal of the American Statistical Association, 98:968–979, 2003. L. P. Zhu and L. X. Zhu. A data-adaptive hybrid method for dimension reduction. Journal of the American Statistical Association, 21:851–861, 2009. L. P. Zhu, L. X. Zhu, L. Ferre, and T. Wang. Sufficient dimension reduction through discretization-expectation estimation. Biometrika, 97:295–304, 2010. M. Zhua, L. X.and Ohtakic and Y. Lid. On hybrid methods of inverse regression-based algorithms. Journal of Computational Statistics & Data Analysis, 51:2621–2635, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56489 | - |
| dc.description.abstract | 在許多迴歸或是建立診斷準則的研究上,經常有一些自變項具有較
高的預測或分類能力,但同時也需要較高的成本。受限於現實的取樣, 研究者往往沒有足夠的經費或時間為每一位受試者量測這些資訊,因 此在許多實務研究上經常會使用較低廉的變項做初步的篩選,而對於 通過篩選的樣本再進一步取得高成本但更精確的資料。而在現今大型 資料的出現,預測或分類準則建立經常會面臨高維度的資料處理,針 對降維度的問題,充分維度縮減已發展多年,對於各種資料結構也有 不同應對的分析方法,然而當研究者直接對預先篩選用的自變項進行 降維度分析時,並沒有使用到高成本資料的訊息。在本研究中,我們 提出新的兩階段降維度方法來利用高成本資料的訊息,希望藉此增進 預先篩選模型的精準度。在模擬的結果跟實際資料的分析中,兩階段 降維度方法都有優於直接降維度分析的表現。 | zh_TW |
| dc.description.abstract | In practical applications, some independent variables usually require more
cost but with better ability to predict the behaviors of outcome. In this situation, we may interested in constructing a prediction model or classification rule based on those cheaper covariates for pre-screening. For those identified subjects, we can obtain more detailed information for further treatment. To model the relationship between outcome and predictors, a commonly encountered problem is the large dimension of covariates. Sufficient dimension reduction has been proposed to solve this problem. When we focus on the relation between response and cheaper covariates, we can consider covariates with higher cost as additional information. In this article, we provide a twostage dimension reduction method to incorporate additional information into the estimation. The main idea is to confine the searching space of target by constructing an envelope subspace. Simulation and real data analysis support the improvement of the procedure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:31:07Z (GMT). No. of bitstreams: 1 ntu-103-R01849003-1.pdf: 1400315 bytes, checksum: b3b830b4aad51b1560a250152ee5864e (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv Contents v List of Figures vii List of Tables ix 1 Introduction 1 2 Reviews of Dimension Reduction Methods 5 2.1 Preliminary.....................5 2.2 Estimation for S Y |Z.....................6 2.3 Estimation for S (W) Y |Z .....................7 3 Estimation of S Y |Z with Additional Information 9 3.1 The W-envelope subspace of S Y |Z.....................9 3.2 A two-stage estimation procedure for S Y |Z .....................11 3.3 Determination of (η, denv) and d.....................14 3.4 Evaluation of S env..................... 17 3.5 Identifying direct and indirect effects of Z on Y.....................19 4 Numerical Studies 23 4.1 Simulation settings .....................23 4.2 Simulation results .....................24 5 Data Analysis 29 5.1 The PIMA data..................... 29 5.2 The WPBCC data.....................30 6 Discussion 37 Bibliography 39 | |
| dc.language.iso | en | |
| dc.subject | 充分降維縮減 | zh_TW |
| dc.subject | 切片逆迴歸 | zh_TW |
| dc.subject | 中心子空間 | zh_TW |
| dc.subject | 部分中心子空間 | zh_TW |
| dc.subject | 部分切片逆迴歸 | zh_TW |
| dc.subject | 存活分析 | zh_TW |
| dc.subject | 兩階段 | zh_TW |
| dc.subject | Two-stage | en |
| dc.subject | Central subspace | en |
| dc.subject | Partial central subspace | en |
| dc.subject | Partial sliced inverse regression | en |
| dc.subject | Sliced inverse regression | en |
| dc.subject | Sufficient dimension reduction | en |
| dc.subject | Survival | en |
| dc.title | 利用額外訊息之降維度分析方法 | zh_TW |
| dc.title | Sufficient Dimension Reduction with Extra Information | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李文宗,蕭朱杏,陳素雲 | |
| dc.subject.keyword | 充分降維縮減,切片逆迴歸,中心子空間,部分中心子空間,部分切片逆迴歸,存活分析,兩階段, | zh_TW |
| dc.subject.keyword | Central subspace,Partial central subspace,Partial sliced inverse regression,Sliced inverse regression,Sufficient dimension reduction,Survival,Two-stage, | en |
| dc.relation.page | 41 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-14 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
