Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56475
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余化龍(Hwa-Lung Yu)
dc.contributor.authorYun-Shu Hsuen
dc.contributor.author許雲旭zh_TW
dc.date.accessioned2021-06-16T05:30:25Z-
dc.date.available2015-08-17
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citation1. Aas, K., C. Czado, A. Frigessi and H. Bakken (2009). 'Pair-copula constructions of multiple dependence.' Insurance Mathematics & Economics 44(2): 182-198.
2. Adamowski, K. (2000). 'Regional analysis of annual maximum and partial duration flood data by nonparametric and L-moment methods.' Journal of Hydrology 229(3–4): 219-231.
3. Akaike, H. (1992). Information theory and an extension of the maximum likelihood principle.
4. Alfonsi, A. and D. Brigo (2005). 'New families of copulas based on periodic functions.' Communications in Statistics-Theory and Methods 34(7): 1437-1447.
5. Allcroft, D. J. and C. A. Glasbey (2003). 'A latent Gaussian Markov random-field model for spatiotemporal rainfall disaggregation.' Journal of the Royal Statistical Society Series C-Applied Statistics 52: 487-498.
6. Bardossy, A. (2006). 'Copula-based geostatistical models for groundwater quality parameters.' Water Resources Research 42(11).
7. Bardossy, A. and J. Li (2008). 'Geostatistical interpolation using copulas.' Water Resources Research 44(7).
8. Bardossy, A. and G. G. S. Pegram (2009). 'Copula based multisite model for daily
74
precipitation simulation.' Hydrology and Earth System Sciences 13(12): 2299-2314.
9. Bargaoui, Z. K. and A. Chebbi (2009). 'Comparison of two kriging interpolation methods applied to spatiotemporal rainfall.' Journal of Hydrology 365(1-2): 56-73.
10. Bedford, T. and R. M. Cooke (2001). 'Probability density decomposition for conditionally dependent random variables modeled by vines.' Annals of Mathematics and Artificial Intelligence 32(1-4): 245-268.
11. Bedford, T. and R. M. Cooke (2002). 'Vines - A new graphical model for dependent random variables.' Annals of Statistics 30(4): 1031-1068.
12. Burn, D. (1989). 'Cluster Analysis as Applied to Regional Flood Frequency.' Journal of Water Resources Planning and Management 115(5): 567-582.
13. Burn, D. H. (1990). 'Evaluation of regional flood frequency analysis with a region of influence approach.' Water Resources Research 26(10): 2257-2265.
14. Cannarozzo, M., F. D'Asaro and V. Ferro (1995). 'Regional rainfall and flood frequency analysis for Sicily using the two component extreme value distribution.' Hydrological Sciences Journal 40(1): 19-42.
15. Cannizzaro, F., G. Greco, S. Rizzo and E. Sinagra (1978). 'Results of the measurements carried out in order to verify the validity of the poisson-exponential distribution in radioactive decay events.' The International Journal of Applied
75
Radiation and Isotopes 29(11): 649-IN641.
16. Christakos, G. and V. R. Raghu (1996). 'Dynamic stochastic estimation of physical variables.' Mathematical Geology 28(3): 341-365.
17. Cong, S., Y. Li, J. L. Vogel and J. C. Schaake (1993). 'Identification of the underlying distribution form of precipitation by using regional data.' Water Resources Research 29(4): 1103-1111.
18. Dalrymple, T. (1960). Flood-frequency analyses, Manual of Hydrology: Part 3, U.S. G.P.O.
19. De Michele, C., G. Salvadori and R. Ross (2008). 'Discussion of 'Bivariate Flood Frequency Analysis Using the Copula Method' by L. Zhang and V. P. Singh.' Journal of Hydrologic Engineering 13(4): 286-287.
20. Division, I. B. M. C. R. and J. R. M. Hosking (1996). Fortran Routines for Use with the Method of L-moments Version 3, IBM Watson Research Center.
21. Douglas, E. M., R. M. Vogel and C. N. Kroll (2000). 'Trends in floods and low flows in the United States: impact of spatial correlation.' Journal of Hydrology 240(1-2): 90-105.
22. Fowler, H. J. and C. G. Kilsby (2003). 'A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000.' International Journal of Climatology 23(11): 1313-1334.
76
23. Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan and P. K. Xavier (2006). 'Increasing Trend of Extreme Rain Events Over India in a Warming Environment.' Science 314(5804): 1442-1445.
24. Graler, B. and E. Pebesma (2011). 'The pair-copula construction for spatial data: a new approach to model spatial dependency.' Spatial Statistics 2011: Mapping Global Change 7: 206-211.
25. Greenwood, J. A., J. M. Landwehr, N. C. Matalas and J. R. Wallis (1979). 'Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form.' Water Resources Research 15(5): 1049-1054.
26. Guse, B., A. Castellarin, A. H. Thieken and B. Merz (2009). 'Effects of intersite dependence of nested catchment structures on probabilistic regional envelope curves.' Hydrology and Earth System Sciences 13(9): 1699-1712.
27. Gyasi-Agyei, Y. and C. S. Melching (2012). 'Modelling the dependence and internal structure of storm events for continuous rainfall simulation.' Journal of Hydrology 464: 249-261.
28. Hosking, J. R. M. (1986). The theory of probability weighted moments.
29. Hosking, J. R. M. (1990). 'L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics.' Journal of the Royal Statistical
77
Society. Series B (Methodological) 52(1): 105-124.
30. Hosking, J. R. M. and J. R. Wallis (1988). 'The effect of intersite dependence on regional flood frequency analysis.' Water Resources Research 24(4): 588-600.
31. Hosking, J. R. M., J. R. Wallis and E. F. Wood (1985). 'Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments.' Technometrics 27(3): 251-261.
32. Joe, H. (1996). 'Families of m-Variate Distributions with Given Margins and m(m-1)/2 Bivariate Dependence Parameters.' Lecture Notes-Monograph Series 28: 120-141.
33. Jones, M. C. (2002). 'Student's simplest distribution.' Journal of the Royal Statistical Society: Series D (The Statistician) 51(1): 41-49.
34. Karamouz, M., S. Torabi and S. Araghinejad (2007). 'Case study of monthly regional rainfall evaluation by spatiotemporal geostatistical method.' Journal of Hydrologic Engineering 12(1): 97-108.
35. Khalili, M., F. Brissette and R. Leconte (2009). 'Stochastic multi-site generation of daily weather data.' Stochastic Environmental Research and Risk Assessment 23(6): 837-849.
36. Kumar, R. and C. Chatterjee (2005). 'Regional Flood Frequency Analysis Using L-Moments for North Brahmaputra Region of India.' Journal of Hydrologic
78
Engineering 10(1): 1-7.
37. Landwehr, J. M., N. C. Matalas and J. R. Wallis (1979). 'Probability weighted moments compared with some traditional techniques in estimating Gumbel Parameters and quantiles.' Water Resources Research 15(5): 1055-1064.
38. Lee, T. H. and X. D. Long (2009). 'Copula-based multivariate GARCH model with uncorrelated dependent errors.' Journal of Econometrics 150(2): 207-218.
39. Marshall, A. W. and I. Olkin (1967). 'A Generalized Bivariate Exponential Distribution.' Journal of Applied Probability 4(2): 291-&.
40. Marshall, A. W. and I. Olkin (1967). 'A Multivariate Exponential Distribution.' Journal of the American Statistical Association 62(317): 30-44.
41. Nazemi, A. and A. Elshorbagy (2012). 'Application of copula modelling to the performance assessment of reconstructed watersheds.' Stochastic Environmental Research and Risk Assessment 26(2): 189-205.
42. Nelsen, R. B. (2006). An Introduction to Copulas. New York, Springer-Verlag.
43. Ngongondo, C. S., C. Y. Xu, L. M. Tallaksen, B. Alemaw and T. Chirwa (2011). 'Regional frequency analysis of rainfall extremes in Southern Malawi using the index rainfall and L-moments approaches.' Stochastic Environmental Research and Risk Assessment 25(7): 939-955.
44. Nikoloulopoulos, A. K., H. Joe and H. Li (2010). 'Vine copulas with asymmetric
79
tail dependence and applications to financial return data.' Computational Statistics & Data Analysis.
45. Paulson, K. S. (2002). 'Spatial-temporal statistics of rainrate random fields.' Radio Science 37(5).
46. Peel, M. C., Q. J. Wang, R. M. Vogel and T. A. McMahon (2001). 'The utility of L-moment ratio diagrams for selecting a regional probability distribution.' Hydrological Sciences Journal 46(1): 147-155.
47. Prudhomme, C., N. Reynard and S. Crooks (2002). 'Downscaling of global climate models for flood frequency analysis: where are we now?' Hydrological Processes 16(6): 1137-1150.
48. Rebora, N., L. Ferraris, J. von Hardenberg and A. Provenzale (2006). 'RainFARM: Rainfall downscaling by a filtered autoregressive model.' Journal of Hydrometeorology 7(4): 724-738.
49. Rossi, F., M. Fiorentino and P. Versace (1984). 'Two-Component Extreme Value Distribution for Flood Frequency Analysis.' Water Resources Research 20(7): 847-856.
50. Ruiz-Medina, M. D., F. J. Alonso, J. M. Angulo and M. C. Bueso (2003). 'Functional stochastic modeling and prediction of spatiotemporal processes.' Journal of Geophysical Research-Atmospheres 108(D24).
80
51. Salisu Dan'azumi, S. S. a. A. A. (2010). 'Modeling the Distribution of Rainfall Intensity using Hourly Data.' American Journal of Environmental Sciences 6(3): 238-243.
52. Severino, E. and T. Alpuim (2005). 'Spatiotemporal models in the estimation of area precipitation.' Environmetrics 16(8): 773-802.
53. Sklar, A. (1959). Fonctions de repartition a n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris (in French) 8: 229-231.
54. Skoien, J. O. and G. Bloschl (2007). 'Spatiotemporal topological kriging of runoff time series.' Water Resources Research 43(9).
55. Stober, J., H. Joe and C. Czado (2013). 'Simplified pair copula constructions Limitations and extensions.' Journal of Multivariate Analysis 119: 101-118.
56. Stroud, J. R., P. Muller and B. Sanso (2001). 'Dynamic models for spatiotemporal data.' Journal of the Royal Statistical Society Series B-Statistical Methodology 63: 673-689.
57. Sveinsson, O. G. B., J. D. Salas and C. D. Boes (2002). 'Regional frequency analysis of extreme precipitation in Northeastern Colorado and Fort Collins flood of 1997.' Journal of Hydrologic Engineering 7(1): 49-63.
58. Tasker, G. D. and J. R. Stedinger (1989). 'An operational GLS model for hydrologic regression.' Journal of Hydrology 111(1–4): 361-375.
81
59. Tolikas, K. (2011). The rare event risk in African emerging stock markets, Emerald Group Publishing.
60. Troutman, B. M. and M. R. Karlinger (2003). 'Regional flood probabilities.' Water Resources Research 39(4): 1095.
61. Vischel, T., T. Lebel, S. Massuel and B. Cappelaere (2009). 'Conditional simulation schemes of rain fields and their application to rainfall-runoff modeling studies in the Sahel.' Journal of Hydrology 375(1-2): 273-286.
62. Westerberg, I., A. Walther, J. L. Guerrero, Z. Coello, S. Halldin, C. Y. Xu, D. Chen and L. C. Lundin (2010). 'Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics.' Theoretical and Applied Climatology 101(3-4): 381-396.
63. Yang, T., Q. X. Shao, Z. C. Hao, X. Chen, Z. X. Zhang, C. Y. Xu and L. M. Sun (2010). 'Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China.' Journal of Hydrology 380(3-4): 386-405.
64. Zhang, L. and V. Singh (2007). 'Gumbel–Hougaard Copula for Trivariate Rainfall Frequency Analysis.' Journal of Hydrologic Engineering 12(4): 409-419.
65. Zhang, L. and V. P. Singh (2006). 'Bivariate flood frequency analysis using the copula method.' Journal of Hydrologic Engineering 11(2): 150-164.
82
66. Zhang, Q., Y. D. Chen, X. H. Chen and J. F. Li (2011). 'Copula-Based Analysis of Hydrological Extremes and Implications of Hydrological Behaviors in the Pearl River Basin, China.' Journal of Hydrologic Engineering 16(7): 598-607.
67. Zhang, Q., J. F. Li, V. P. Singh and C. Y. Xu (2013). 'Copula-based spatio-temporal patterns of precipitation extremes in China.' International Journal of Climatology 33(5): 1140-1152.
68. Zhao, L. L., J. Xia, L. Sobkowiak, Z. G. Wang and F. R. Guo (2012). 'Spatial Pattern Characterization and Multivariate Hydrological Frequency Analysis of Extreme Precipitation in the Pearl River Basin, China.' Water Resources Management 26(12): 3619-3637.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56475-
dc.description.abstract極端降雨事件之發生頻率在近年來不斷提升且造成的巨大的災害,因此區域頻率分析常被用來推估災害洪水發生之回歸週期。然而許多的研究大多給定強烈的假設,如忽略各測站間之降雨相關性。研究指出宜蘭地區降雨被季風所影響,且因為身處三角口袋型,儘管沒有颱風的影響還是出現極端降雨事件。
本研究中主要是應用聯結函數(Copula)於時空降雨分布模式且探討區域性的頻率分析在宜蘭地區,研究期間為1960-2011年。本模型主要是依照以下的三個步驟進行。首先應用聯結函數建立各測站間之降雨相關性在不被邊際分配需要相同的假設影響下,接著配對聯結函數將用來把多變量聯結函數拆解成多個雙變量聯結函數。第二,條件機率分配將用來分析研究區域不同情境下的降雨情形。最後應用聯結函數之區域頻率分析將與過去的傳統方法做比較且同時模擬在相同回歸週期下的降雨情形。
建立測站間相關性結構後,聯合機率密度函數用來模擬複雜的降雨型態和區域頻率分析。在固定中游的降雨大小後,模擬的結果顯示上下游有著不同的降雨型態,且下游的測站之降雨都多於上游的測站;而考慮相關性之區域頻率分析的結果顯示,在考慮測站結構關係可以更加推估出貼近真實的極限降雨。對於單一測站的回歸週期模擬結果中,在較小的回歸週期中,降雨強度的變異較大;在較高的回歸週期中,變異則不大。因此考慮相關性的頻率分析除了可以模擬更多的降雨型態之外還可以得到區域真實的極限降雨事件,並且證實在區域分析中相關性的重要性。
zh_TW
dc.description.abstractExtreme rainfall events occur increasingly and cause enormous loss; consequently, regional frequency analysis has become more important and widely used to estimate the return period of floods. However, the dependence among stations was not considered in the past. Studies have shown that the variation of rainfall patterns was affected by monsoon, especially during winter, in I-Lan area, i.e. the northeast corner of Taiwan. The most important factor that affects the precipitation in I-Lan is the local circulation caused by the triangle-shaped terrain. Therefore, without the influence of strong weather systems, e.g. typhoon, extreme rainfall events still occur.
The purpose of this study is applying techniques of copula to analyze the multisite stochastic hourly rainfall patterns and regional frequency considering the dependence among surrounding rainfall stations during the period of 1960-2011. This model is following three steps to analyze the rainfall patterns and return periods. First, we use copulas to model the dependence among rainfall stations without the influence of marginal distributions, and then pair-copula structures are applied to separate the multivariate copula into several of bivariate copulas. Second, conditional probability density function is used to realize the major space-time pattern of local precipitation with different scenarios. Finally, copula-based regional frequency analysis is compared with the index flood methods with L-moments, and the return period simulation
IV
considering dependence among stations is also exhibited in this part.
After constructing the dependent structure, the joint density function can be used to simulate the complicate regional rainfall patterns and regional return periods. In a specific scenario, the rainfall in downstream is more than in upstream when the extreme rainfall event occurs in midstream. Furthermore, copula-based return periods considering dependence are more accord with the real events than the index flood methods with L-moments. Considering dependent structure by copula can not only simulate the complex rainfall patterns but also reduce the possibility of underestimated or overestimated situation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:30:25Z (GMT). No. of bitstreams: 1
ntu-103-R01622025-1.pdf: 3579312 bytes, checksum: ece783951d38011729e2c96468af4f4a (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents謝誌 .................................................................................................................................. I
中文摘要 .......................................................................................................................... II
Abstract ........................................................................................................................... III
Table of Contents ............................................................................................................. V
List of Figures ............................................................................................................... VIII
List of Tables .................................................................................................................... X
Chapter 1 Introduction .................................................................................................. 1
1. Motivation and Objectives.................................................................................... 2
2. Chapter Description .............................................................................................. 3
3. Flow Chart ............................................................................................................ 5
Chapter 2 Literature Review ......................................................................................... 6
1. Regional Frequency Analysis ............................................................................... 6
2. L-moments ............................................................................................................ 8
3. Copulas ................................................................................................................. 9
Chapter 3 Materials and Methods ............................................................................... 11
1. Study Area .......................................................................................................... 11
VI
2. Copula Functions ................................................................................................ 13
2.1 Copulas ........................................................................................................... 13
2.2 Copula Family ................................................................................................ 14
2.3 Pair Copula ..................................................................................................... 17
3. L-Moments ......................................................................................................... 20
3.1 Introduction to L-Moments ............................................................................ 20
3.2 Parameter Estimation Using L-Moments ....................................................... 23
3.3 Choice of a frequency distribution ................................................................. 29
4. Regional Frequency Analysis ............................................................................. 31
4.1 Multi-site frequency analysis ......................................................................... 31
4.2 Index flood method ......................................................................................... 32
5. Statistic Model Analysis Tool ............................................................................ 33
5.1 Rank correlation - Kendall’s ...................................................................... 33
5.2 Akaike Information Criterion ......................................................................... 33
Chapter 4 Result and Discussion ................................................................................. 34
1. Data selection ..................................................................................................... 34
1.1 Data integrity .................................................................................................. 34
VII
1.2 Extreme rainfall event thresholds ................................................................... 36
2. Copula functions ................................................................................................. 39
2.1 Marginal distributions .................................................................................... 39
2.2 Vines structure-pair copulas ........................................................................... 41
2.3 Copula selection ............................................................................................. 43
2.4 Rainfall Scenario ............................................................................................ 45
3. L-moment ........................................................................................................... 53
3.1 Sample L-moments and Identification of homogeneous regions ................... 53
3.2 Choice of a frequency distribution ................................................................. 57
4. Regional frequency analysis ............................................................................... 60
4.1 Copulas versus L-moments ............................................................................ 60
4.2 Simulation for return periods .......................................................................... 64
Chapter 5 Conclusion and Recommendation .............................................................. 70
1. Conclusion .......................................................................................................... 70
2. Recommendation ................................................................................................ 71
References ...................................................................................................................... 73
dc.language.isoen
dc.subject區域回歸週期zh_TW
dc.subject樹狀架構zh_TW
dc.subject配對聯結函數zh_TW
dc.subject極端降與事件zh_TW
dc.subject聯結函數zh_TW
dc.subject時空間降雨型態zh_TW
dc.subjectregional return perioden
dc.subjectpair-copulasen
dc.subjectvine structuresen
dc.subjectspace-time rainfall patternen
dc.subjectextreme rainfall eventen
dc.subjectcopulasen
dc.title以聯結函數建立區域頻率分析之降雨時空關係 - 以蘭陽流域為例zh_TW
dc.titleCopula-based multisite spatial-temporal rainfall patterns and regional frequency analysis – A Case Study in Lan-Yang Basinen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳憲宗(Shian-Tzung Chen),童慶斌(Ching-Bin Tung),陳主惠(Chu-Hui Chen)
dc.subject.keyword聯結函數,配對聯結函數,樹狀架構,時空間降雨型態,極端降與事件,區域回歸週期,zh_TW
dc.subject.keywordcopulas,pair-copulas,vine structures,space-time rainfall pattern,extreme rainfall event,regional return period,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved