Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56472
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡(Ching-I Huang)
dc.contributor.authorPao-Ching Wangen
dc.contributor.author王寶慶zh_TW
dc.date.accessioned2021-06-16T05:30:17Z-
dc.date.available2025-07-26
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-26
dc.identifier.citation[1] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J.J.S. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270 (1995) 1789-1791.
[2] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, in: Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 2011, pp. 80-84.
[3] G. Li, R. Zhu, Y. Yang, Polymer solar cells, Nature photonics, 6 (2012) 153.
[4] M. Kaltenbrunner, M.S. White, E.D. Głowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility, Nature communications, 3 (2012) 770.
[5] Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, 18% Efficiency organic solar cells, Science Bulletin, 65 (2020) 272-275.
[6] P. Morvillo, E. Bobeico, Tuning the LUMO level of the acceptor to increase the open-circuit voltage of polymer-fullerene solar cells: a quantum chemical study, Solar Energy Materials and Solar Cells, 92 (2008) 1192-1198.
[7] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature photonics, 3 (2009) 649-653.
[8] N.K. Elumalai, A. Uddin, Open circuit voltage of organic solar cells: an in-depth review, Energy Environmental Science, 9 (2016) 391-410.
[9] P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, Journal of Applied Physics, 93 (2003) 3693-3723.
[10] S. Banerjee, S.S.K. Iyer, Short-circuit current density and spectral response modelling of bulk-heterojunction solar cells, Organic Electronics, 11 (2010) 2032-2036.
[11] Q. Wang, S. Zhang, B. Xu, L. Ye, H. Yao, Y. Cui, H. Zhang, W. Yuan, J. Hou, Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione‐based Photovoltaic Polymer by Grafting Alkylthio Functional Groups, Chemistry–An Asian Journal, 11 (2016) 2650-2655.
[12] B. Qi, J. Wang, Fill factor in organic solar cells, Phys Chem Chem Phys, 15 (2013) 8972-8982.
[13] C.J. Brabec, N.S. Sariciftci, J.C.J.A.f.m. Hummelen, Plastic solar cells, Advanced functional materials, 11 (2001) 15-26.
[14] J.L. Brédas, J. Cornil, A.J.J.A.M. Heeger, The exciton binding energy in luminescent conjugated polymers, Advanced Materials, 8 (1996) 447-452.
[15] O.V. Mikhnenko, P.W. Blom, T.-Q.J.E. Nguyen, E. Science, Exciton diffusion in organic semiconductors, Energy Environmental Science, 8 (2015) 1867-1888.
[16] B.C. Thompson, J.M.J.A.c.i.e. Fréchet, Polymer–fullerene composite solar cells, Angewandte chemie international edition, 47 (2008) 58-77.
[17] H. Lee, C. Park, D.H. Sin, J.H. Park, K.J.A.M. Cho, Recent Advances in Morphology Optimization for Organic Photovoltaics, Advanced Materials, 30 (2018) 1800453.
[18] H. Lee, C. Park, D.H. Sin, J.H. Park, K. Cho, Recent advances in morphology optimization for organic photovoltaics, Advanced Materials, 30 (2018) 1800453.
[19] D.R. Kozub, K. Vakhshouri, L.M. Orme, C. Wang, A. Hexemer, E.D. Gomez, Polymer crystallization of partially miscible polythiophene/fullerene mixtures controls morphology, Macromolecules, 44 (2011) 5722-5726.
[20] I. Osaka, M. Saito, H. Mori, T. Koganezawa, K. Takimiya, Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular‐weight control and blending with PC61BM leads to high efficiencies in solar cells, Advanced Materials, 24 (2012) 425-430.
[21] W. Li, S. Albrecht, L. Yang, S. Roland, J.R. Tumbleston, T. McAfee, L. Yan, M.A. Kelly, H. Ade, D. Neher, Mobility-controlled performance of thick solar cells based on fluorinated copolymers, Journal of the American Chemical Society, 136 (2014) 15566-15576.
[22] J. Yuan, W. Ma, High efficiency all-polymer solar cells realized by the synergistic effect between the polymer side-chain structure and solvent additive, Journal of Materials Chemistry A, 3 (2015) 7077-7085.
[23] Z. Liu, Y. Wu, Q. Zhang, X. Gao, Non-fullerene small molecule acceptors based on perylene diimides, Journal of Materials Chemistry A, 4 (2016) 17604-17622.
[24] H. Zhong, L. Ye, J.-Y. Chen, S.B. Jo, C.-C. Chueh, J.H. Carpenter, H. Ade, A.K.-Y. Jen, A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive, Journal of Materials Chemistry A, 5 (2017) 10517-10525.
[25] H. Wang, J. Cao, J. Yu, Z. Zhang, R. Geng, L. Yang, W. Tang, Molecular engineering of central fused-ring cores of non-fullerene acceptors for high-efficiency organic solar cells, Journal of materials chemistry A, 7 (2019) 4313-4333.
[26] Y. Zhang, Y. Xu, M.J. Ford, F. Li, J. Sun, X. Ling, Y. Wang, J. Gu, J. Yuan, W.J.A.E.M. Ma, Thermally Stable All‐Polymer Solar Cells with High Tolerance on Blend Ratios, Advanced Energy Materials, 8 (2018) 1800029.
[27] C.H.Y. Ho, S.H. Cheung, H.W. Li, K.L. Chiu, Y. Cheng, H. Yin, M.H. Chan, F. So, S.W. Tsang, S.K. So, Using ultralow dosages of electron acceptor to reveal the early stage donor–acceptor electronic interactions in bulk heterojunction blends, Advanced Energy Materials, 7 (2017) 1602360.
[28] M.-Y. Chiu, U.-S. Jeng, M.-S. Su, K.-H. Wei, Morphologies of self-organizing regioregular conjugated polymer/fullerene aggregates in thin film solar cells, Macromolecules, 43 (2010) 428-432.
[29] J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature materials, 6 (2007) 497-500.
[30] J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H.J.N.E. Yan, Efficient organic solar cells processed from hydrocarbon solvents, Nature Energy, 1 (2016) 15027.
[31] Y. Lin, F. Zhao, Y. Wu, K. Chen, Y. Xia, G. Li, S.K. Prasad, J. Zhu, L. Huo, H. Bin, Mapping Polymer Donors toward High‐Efficiency Fullerene Free Organic Solar Cells, Advanced Materials, 29 (2017) 1604155.
[32] J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Efficient organic solar cells processed from hydrocarbon solvents, Nature Energy, 1 (2016) 1-7.
[33] H. Bin, L. Gao, Z.-G. Zhang, Y. Yang, Y. Zhang, C. Zhang, S. Chen, L. Xue, C. Yang, M.J.N.c. Xiao, 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor, Nature communications, 7 (2016) 13651.
[34] S. Nam, M. Shin, H. Kim, Y. Kim, Temperature/time-dependent crystallization of polythiophene: fullerene bulk heterojunction films for polymer solar cells, Nanoscale, 2 (2010) 2384-2389.
[35] X. Lu, H. Hlaing, D.S. Germack, J. Peet, W.H. Jo, D. Andrienko, K. Kremer, B.M. Ocko, Bilayer order in a polycarbazole-conjugated polymer, Nature communications, 3 (2012) 1-7.
[36] K. Sun, Z. Xiao, S. Lu, W. Zajaczkowski, W. Pisula, E. Hanssen, J.M. White, R.M. Williamson, J. Subbiah, J. Ouyang, A molecular nematic liquid crystalline material for high-performance organic photovoltaics, Nature communications, 6 (2015) 1-9.
[37] J. Miao, H. Chen, F. Liu, B. Zhao, L. Hu, Z. He, H. Wu, Efficiency enhancement in solution-processed organic small molecule: Fullerene solar cells via solvent vapor annealing, Applied Physics Letters, 106 (2015) 49_41.
[38] S. Miyanishi, K. Tajima, K.J.M. Hashimoto, Morphological stabilization of polymer photovoltaic cells by using cross-linkable poly (3-(5-hexenyl) thiophene), Macromolecules, 42 (2009) 1610-1618.
[39] A. Yassar, L. Miozzo, R. Gironda, G.J.P.i.P.S. Horowitz, Rod–coil and all-conjugated block copolymers for photovoltaic applications, Progress in Polymer Science, 38 (2013) 791-844.
[40] M. Matsen, F.S. Bates, Unifying weak-and strong-segregation block copolymer theories, Macromolecules, 29 (1996) 1091-1098.
[41] M.W.J.T.E.P.J.E. Matsen, Fast and accurate SCFT calculations for periodic block-copolymer morphologies using the spectral method with Anderson mixing, The European Physical Journal E, 30 (2009) 361.
[42] A.K. Khandpur, S. Foerster, F.S. Bates, I.W. Hamley, A.J. Ryan, W. Bras, K. Almdal, K. Mortensen, Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition, Macromolecules, 28 (1995) 8796-8806.
[43] F.S. Bates, G.H.J.A.r.o.p.c. Fredrickson, Block copolymer thermodynamics: theory and experiment, Annual review of physical chemistry, 41 (1990) 525-557.
[44] M.C. Orilall, U. Wiesner, Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells, Chem Soc Rev, 40 (2011) 520-535.
[45] R.A. Segalman, B. McCulloch, S. Kirmayer, J.J. Urban, Block Copolymers for Organic Optoelectronics, Macromolecules, 42 (2009) 9205-9216.
[46] U. Stalmach, B. de Boer, C. Videlot, P.F. van Hutten, G. Hadziioannou, Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques, Journal of the American Chemical Society, 122 (2000) 5464-5472.
[47] B. de Boer, U. Stalmach, P.F. van Hutten, C. Melzer, V.V. Krasnikov, G.J.P. Hadziioannou, Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers, Polymer, 42 (2001) 9097-9109.
[48] S.-S. Sun, Design of a block copolymer solar cell, Solar energy materials and solar cells, 79 (2003) 257-264.
[49] S.B. Darling, Directing the self-assembly of block copolymers, Progress in Polymer Science, 32 (2007) 1152-1204.
[50] X. Chen, B. Gholamkhass, X. Han, G. Vamvounis, S. Holdcroft, Polythiophene‐graft‐Styrene and Polythiophene‐graft‐(Styrene‐graft‐C60) Copolymers, Macromolecular Rapid Communications, 28 (2007) 1792-1797.
[51] S.-S. Sun, C. Zhang, A. Ledbetter, S. Choi, K. Seo, C.E. Bonner Jr, M. Drees, N.S. Sariciftci, Photovoltaic enhancement of organic solar cells by a bridged donor-acceptor block copolymer approach, Applied physics letters, 90 (2007) 043117.
[52] S. Barrau, T. Heiser, F. Richard, C. Brochon, C. Ngov, K. Van De Wetering, G. Hadziioannou, D.V. Anokhin, D.A. Ivanov, Self-Assembling of Novel Fullerene-Grafted Donor–Acceptor Rod− Coil Block Copolymers, Macromolecules, 41 (2008) 2701-2710.
[53] N. Sary, F. Richard, C. Brochon, N. Leclerc, P. Lévêque, J.N. Audinot, S. Berson, T. Heiser, G. Hadziioannou, R. Mezzenga, A New Supramolecular Route for Using Rod‐Coil Block Copolymers in Photovoltaic Applications, Advanced Materials, 22 (2010) 763-768.
[54] J. Bang, U. Jeong, D.Y. Ryu, T.P. Russell, C.J. Hawker, Block copolymer nanolithography: translation of molecular level control to nanoscale patterns, Advanced Materials, 21 (2009) 4769-4792.
[55] E.J.W. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D.-M. Smilgies, G.E.S. Toombes, M.A. Hillmyer, S. Ludwigs, U. Steiner, A bicontinuous double gyroid hybrid solar cell, Nano letters, 9 (2008) 2807-2812.
[56] I. Botiz, S.B. Darling, Self-assembly of poly (3-hexylthiophene)-block-polylactide block copolymer and subsequent incorporation of electron acceptor material, Macromolecules, 42 (2009) 8211-8217.
[57] G. Wang, F.S. Melkonyan, A. Facchetti, T.J. Marks, All‐Polymer Solar Cells: Recent Progress, Challenges, and Prospects, Angewandte Chemie International Edition, 58 (2019) 4129-4142.
[58] B. Fan, L. Ying, P. Zhu, F. Pan, F. Liu, J. Chen, F. Huang, Y. Cao, All‐polymer solar cells based on a conjugated polymer containing siloxane‐functionalized side chains with efficiency over 10%, Advanced Materials, 29 (2017) 1703906.
[59] M. Casalegno, G. Raos, R. Po, Methodological assessment of kinetic Monte Carlo simulations of organic photovoltaic devices: the treatment of electrostatic interactions, J Chem Phys, 132 (2010) 094705.
[60] C. Groves, R.G. Kimber, A.B. Walker, Simulation of loss mechanisms in organic solar cells: A description of the mesoscopic Monte Carlo technique and an evaluation of the first reaction method, J Chem Phys, 133 (2010) 144110.
[61] M. Casalegno, A. Bernardi, G. Raos, Numerical simulation of photocurrent generation in bilayer organic solar cells: Comparison of master equation and kinetic Monte Carlo approaches, J Chem Phys, 139 (2013) 024706.
[62] D. Kipp, V. Ganesan, A kinetic Monte Carlo model with improved charge injection model for the photocurrent characteristics of organic solar cells, Journal of Applied Physics, 113 (2013) 234502.
[63] B.P. Tim Albes, Dan Popescu, Francesco Arca and Paolo Lugli, Optimization of Organic Solar Cells by Kinetic Monte Carlo Simulations, (2014).
[64] T. Albes, A. Gagliardi, Influence of permittivity and energetic disorder on the spatial charge carrier distribution and recombination in organic bulk-heterojunctions, Phys Chem Chem Phys, 19 (2017) 20974-20983.
[65] W. Kaiser, T. Albes, A. Gagliardi, Charge carrier mobility of disordered organic semiconductors with correlated energetic and spatial disorder, Phys Chem Chem Phys, 20 (2018) 8897-8908.
[66] P.K. Watkins, A.B. Walker, G.L.B. Verschoor, Dynamical Monte Carlo Modelling of Organic Solar Cells:  The Dependence of Internal Quantum Efficiency on Morphology, Nano Letters, 5 (2005) 1814-1818.
[67] F. Yang, S.R. Forrest, Photocurrent Generation in Nanostructured Organic Solar Cells, ACS Nano, 2 (2008) 1022-1032.
[68] Y.S. Lingyi Meng, Qikai Li, Yongfang Li, Xiaowei Zhan, Zhigang Shuai, Robin G. E. Kimber, and Alison B. Walker, Dynamic Monte Carlo Simulation for Highly Efficient Polymer Blend Photovoltaics, (2010).
[69] R.A. Marsh, C. Groves, N.C. Greenham, A microscopic model for the behavior of nanostructured organic photovoltaic devices, Journal of Applied Physics, 101 (2007).
[70] P.M. Baidya, K. Bayat, M. Biesecker, M. Farrokh Baroughi, Kinetic Monte Carlo modeling of dark and illuminated current-voltage characteristics of bulk heterojunction solar cells, Applied Physics Letters, 103 (2013).
[71] T. Albes, B. Popescu, D. Popescu, F. Arca, P. Lugli, Optimization of organic solar cells by kinetic Monte Carlo simulations, in: 14th IEEE International Conference on Nanotechnology, 2014, pp. 1023-1028.
[72] F. Wei, L. Liu, L. Liu, G. Li, Multiscale Modeling and Simulation for Optimizing Polymer Bulk Heterojunction Solar Cells, IEEE Journal of Photovoltaics, 3 (2013) 300-309.
[73] S. Khodakarimi, M.H. Hekmatshoar, F. Abbasi, Monte Carlo simulation of transport coefficient in organic solar cells, Applied Physics A, 122 (2016).
[74] U. Neupane, B. Bahrami, M. Biesecker, M.F. Baroughi, Q. Qiao, Kinetic Monte Carlo modeling on organic solar cells: Domain size, donor-acceptor ratio and thickness, Nano Energy, 35 (2017) 128-137.
[75] M.-H. Tsai, 檢視異質接面高分子太陽能電池光電轉換效率之關鍵影響因素, Institute of Polymer Science and Engineering, National Taiwan University, (2020).
[76] Y.-H. Yang, 藉由動態蒙地卡羅模擬方法探討高效率高分子太陽能電池其高轉換效率之關鍵因素, Institute of Polymer Science and Engineering, National Taiwan University, (2020).
[77] Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells, Nature Communications, 5 (2014) 5293.
[78] L.A.A. Pettersson, L.S. Roman, O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, Journal of Applied Physics, 86 (1999) 487-496.
[79] L. Liu, G. Li, Thickness Optimization of Organic Solar Cells by Optical Transfer Matrix, (2011).
[80] B. Ries, H. Bässler, Monte Carlo study of dispersive charge-carrier transport in spatially random systems with and without energetic disorder, Physical Review B, 35 (1987) 2295.
[81] P.K. Watkins, A.B. Walker, G.L. Verschoor, Dynamical Monte Carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology, Nano letters, 5 (2005) 1814-1818.
[82] M.W. Matsen, F.S. Bates, Unifying weak-and strong-segregation block copolymer theories, Macromolecules, 29 (1996) 1091-1098.
[83] C.G. Bottenfield, F. Wei, H.J. Park, L.J. Guo, G. Li, Investigation of Printing-Based Graded Bulk-Heterojunction Organic Solar Cells, Energy Technology, 3 (2015) 414-422.
[84] Y. Zhou, J.W. Shim, C. Fuentes-Hernandez, A. Sharma, K.A. Knauer, A.J. Giordano, S.R. Marder, B. Kippelen, Direct correlation between work function of indium-tin-oxide electrodes and solar cell performance influenced by ultraviolet irradiation and air exposure, Phys Chem Chem Phys, 14 (2012) 12014-12021.
[85] C. Stelling, C.R. Singh, M. Karg, T.A. Konig, M. Thelakkat, M. Retsch, Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells, Sci Rep, 7 (2017) 42530.
[86] A. Sánchez-Díaz, X. Rodríguez-Martínez, L. Córcoles-Guija, G. Mora-Martín, M. Campoy-Quiles, High-Throughput Multiparametric Screening of Solution Processed Bulk Heterojunction Solar Cells, Advanced Electronic Materials, (2018) 1700477.
[87] M. Liu, W. Li, F. Qiu, A.-C. Shi, Stability of the Frank–Kasper σ-phase in BABC linear tetrablock terpolymers, Soft Matter, 12 (2016) 6412-6421.
[88] M.W. Matsen, Fast and accurate SCFT calculations for periodic block-copolymer morphologies using the spectral method with Anderson mixing, The European Physical Journal E, 30 (2009) 361-369.
[89] G.R. Strobl, M. Schneider, Direct evaluation of the electron density correlation function of partially crystalline polymers, Journal of Polymer Science: Polymer Physics Edition, 18 (1980) 1343-1359.
[90] J.S. Moon, J.K. Lee, S. Cho, J. Byun, A.J. Heeger, “Columnlike” Structure of the Cross-Sectional Morphology of Bulk Heterojunction Materials, Nano Letters, 9 (2009) 230-234.
[91] D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, 22 (1976) 403-434.
[92] D.T. Gillespie, Exact Stochastic Simulation of Coupled Chemical Reactions, J Phys Chem, 81 (1977) 2340.
[93] L. Meng, D. Wang, Q. Li, Y. Yi, J.L. Bredas, Z. Shuai, An improved dynamic Monte Carlo model coupled with Poisson equation to simulate the performance of organic photovoltaic devices, J Chem Phys, 134 (2011) 124102.
[94] N.A. Ran, J.A. Love, C.J. Takacs, A. Sadhanala, J.K. Beavers, S.D. Collins, Y. Huang, M. Wang, R.H. Friend, G.C. Bazan, Harvesting the full potential of photons with organic solar cells, Advanced Materials, (2015).
[95] G. Dennler, M.C. Scharber, C.J. Brabec, Polymer‐Fullerene bulk‐heterojunction solar cells, Advanced Materials, 21 (2009) 1323-1338.
[96] H. Cha, S. Wheeler, S. Holliday, S.D. Dimitrov, A. Wadsworth, H.H. Lee, D. Baran, I. McCulloch, J.R. Durrant, Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor, Advanced Functional Materials, 28 (2018) 1704389.
[97] G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.J. Egelhaaf, D. Brida, G. Cerullo, G. Lanzani, Hot exciton dissociation in polymer solar cells, Nat Mater, 12 (2013) 29-33.
[98] A. Miller, E. Abrahams, Impurity Conduction at Low Concentrations, Physical Review, 120 (1960) 745-755.
[99] F. Jahani, S. Torabi, R.C. Chiechi, L.J. Koster, J.C. Hummelen, Fullerene derivatives with increased dielectric constants, Chem Commun (Camb), 50 (2014) 10645-10647.
[100] E. Ising, Beitrag zur theorie des ferromagnetismus, Zeitschrift für Physik, 31 (1925) 253-258.
[101] V.Z.-H. Chan, J. Hoffman, V.Y. Lee, H. Iatrou, A. Avgeropoulos, N. Hadjichristidis, R.D. Miller, E.L. Thomas, Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors, Science, 286 (1999) 1716-1719.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56472-
dc.description.abstract本研究將微結構形態應用至太陽能電池之主動層並且調整主動層厚度及分離區塊尺寸探討其對於光電性質的影響,我們選擇新穎且高效率的PffBT4T-2OD:PCBM太陽能電池作為本研究的系統,同時運用光學轉換矩陣及動態蒙地卡羅模擬兩種方法並搭配自洽平均場理論所得之微結構形態,分析能量轉換效率及細部光電特性,找出高效率的關鍵因素。
在調整主動層厚度的部分,我們針對Gyroid在兩組體積比上進行模擬且比較,發現其光電特性隨厚度變化之趨勢都極為類似,像是光子吸收效率在特定厚度下皆會出現峰值,使得JSC在此厚度時有較佳的表現,在FF的部分則是隨厚度上升呈現下降的趨勢,整體來說,PCE隨厚度的變化主要受到JSC所主導。針對改變分離區塊尺寸的探討,我們加入層狀及BHJ形態一同和Gyroid形態進行比較,在結構規整的形態中,JSC隨著分離區塊尺寸的上升而下降,FF則是隨之上升而提升,權衡兩者,PCE則是在特定分離區塊尺寸出現峰值;而在BHJ形態下,JSC及FF則都是在特定分離區塊尺寸有較高的數值,導致最終之PCE也是在此尺寸下有較佳的表現,其原因與孤島介面積比例息息相關。透過本研究成功將不同微結構形態應用至高分子太陽能電池,並且探討光電轉換效率之關鍵影響因素,期許提供實驗學者未來在研究上參考的依據,並且促進此領域的發展。
zh_TW
dc.description.abstractIn this research, we applied the microstructure to the active layer of the polymer solar cells and tuned the active layer thickness and the domain size to examine its effect on the photoelectric properties. The novel and high-efficiency PffBT4T-2OD:PCBM solar cells was chosen as our subject in this study. Our simulation consists of optical transfer matrix and kinetic Monte Carlo method, and the microstructure is obtained from self-consistent mean filed theory. The results are evaluated the power conversion efficiency and detailed photoelectric characteristics to demonstrate key factors of high efficiency.
In the part of modifying the active layer thickness we simulated and compared gyroid on the two volume ratios, and found that the trends of its photoelectric characteristics with thickness change are very similar. The photon absorption efficiency has a peak at a specific thickness, making JSC has a better performance at this thickness, and the FF decreases with the increase of thickness. Overall, the change in PCE with thickness is mainly dominated by JSC. For the theme of changing domain size, we added lamellar and BHJ forms to compare them with gyroid forms. Here, the forms are divided into two categories for discussion, one is the structured gyroid and lamellar, and the other is a small number of broken isolated sites BHJ morphology. In the form of regular structure, JSC declines with the increase of domain size, FF is increased with the increase of domain size, to balance the two, PCE is the peak value of the specific domain size. In the BHJ , both JSC and FF have a higher value at a specific domain size, which leads to better performance of the final PCE at this domain size. The reason is closely related to the isolated site interface ratio. Through this research, we successfully applied microstructures to polymer solar cells, and discussed the key influencing factors of power conversion efficiency, looking forward to provide experimental scholars with reference for future research and promote the development of this field.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:30:17Z (GMT). No. of bitstreams: 1
U0001-2607202017310600.pdf: 3752138 bytes, checksum: a01bdb7df555764f0db959d67b2011c7 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vi
表目錄 ix
第 1章 前言 1
第 2章 模擬方法 7
2.1 光學轉換矩陣模組 9
2.2 微結構形態生成與分離區塊尺寸測定 14
2.3 動態蒙地卡羅模擬方法 18
第 3章 結果與討論 24
3.1 探討延著X、Y及Z軸晶格數目擴增對於Gyroid形態光電性質之影響 24
3.2 在Gyroid形態下改變主動層厚度對光電性質之影響 27
3.3 各種連續性形態下(Gyroid、層狀及BHJ)改變其分離區塊尺寸對光電性質的影響 34
第 4章 結論 42
參考文獻 44
附錄 52
dc.language.isozh-TW
dc.title運用光學轉換矩陣及動態蒙地卡羅方法探究微結構形態對於高分子太陽能電池光電轉換效率的影響zh_TW
dc.titleExploring the Effect of Microstructure on Polymer Solar Cells via Optical Transfer Matrix and Kinetic Monte Carlo Methoden
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王立義(Lee-Yih Wang),林祥泰(Shiang-Tai Lin)
dc.subject.keyword高分子太陽能電池,PffBT4T-2OD:PCBM,微結構形態,光學轉換矩陣,動態蒙地卡羅方法,主動層厚度,分離區塊尺寸,zh_TW
dc.subject.keywordpolymer solar cells,PffBT4T-2OD:PCBM,microstructure,optical transfer matrix,kinetic Monte Carlo method,active layer thickness,domain size,en
dc.relation.page64
dc.identifier.doi10.6342/NTU202001869
dc.rights.note有償授權
dc.date.accepted2020-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2607202017310600.pdf
  目前未授權公開取用
3.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved