請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56468
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃建璋(JianJang Huang) | |
dc.contributor.author | Jin-Yi Tan | en |
dc.contributor.author | 陳井一 | zh_TW |
dc.date.accessioned | 2021-06-16T05:30:04Z | - |
dc.date.available | 2017-09-03 | |
dc.date.copyright | 2014-09-03 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2014-08-13 | |
dc.identifier.citation | [1] J. Ryou, P. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, H. Kim and R. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Topics Quantum Electron. 15(4), 1080-1091 (2009)
[2] Visible Light Communications Consortium, VLCC http://www.vlcc.net/ [3] IEEE 802.15 WPAN™ Task Group 7 (TG7) Visible Light Communication http://www.ieee802.org/15/pub/TG7.html [4] Klaus-Dieter Langer, Jelena Vučić, Christoph Kottke, Luz Fernández del Rosal, Stefan Nerreter, Joachim Walewski, “Advances and prospects in high-speed information broadcast using phosphorescent white-light LEDs,” 11th International Conference on Transparent Optical Networks (2009) [5] R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650 nm,” Proceedings of the SPIE 60130F, 1-8 (2005) [6] M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, M.-Y. Ke and J. Huang, “InGaN–GaN Nanorod Light Emitting Arrays Fabricated by Silica Nanomasks,” IEEE J. Quantum Electron. 44, 468 (2008) [7] C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng and J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express 16 10549-56 (2008) [8] Y.-J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94 141111-3 (2009) [9] M. D. Drory, J. W. Ager, T. Suski, I. Grzegory and S. Porowski, “Hardness and fracture toughness of bulk single crystal gallium nitride,” Appl. Phys. Lett. 69(26), 4044-4406 (1996) [10] J. F. Shackelford and W. Alexander, “Materials Science and Engineering Handbook,” Third Edition: CRC Press, 474 (2010) [11] C. Chiu, T. Lu, H. Huang, C. Lai, C. Kao, J. Chu, C. Yu, H. Kuo, S. Wang and C. Lin, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007) [12] M.-Y. Hsieh, C.-Y. Wang, L.-Y. Chen, M.-Y. Ke and J. J. Huang, “InGaN–GaN Nanorod Light Emitting Arrays Fabricated by Silica Nanomasks,” IEEE J. Quantum Electron. 44(5),468-472 (2008) [13] A. Kikuchi, M. Tada, K. Miwa and K. Kishino, “Growth and characterization of InGaN/GaN nanocolumn LED,” Edited by Eyink, Kurt G.; Huffaker, Diana L. Proceedings of the SPIE 6129, 36-43 (2006). [14] H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang and K. S. Chung, “High-Brightness Light Emitting Diodes Using Dislocation-Free InGaN/GaN Multiquantum-Well Nanorod Arrays,” Nano letters 4(6), 1059-1062 (2004) [15] Y.-J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim and E. F. Schubert, “ High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111-3 (2009) [16] C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng and J. J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express 16(14), 10549-56 (2008) [17] C. E. Martinez, N. M. Stanton, A. J. Kent, D. M. Graham, P. Dawson, M. J. Kappers, and C. J. Humphreys, “Determination of relative internal quantum efficiency in InGaN/GaN quantum wells,” J. Appl. Phys. 98(5), 053509 (2005). [18] Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,” IEEE J. Sel. Topics Quantum Electron. 15(4), 1137–1143 (2009) [19] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing output power of GaN based LEDs grown on chemical wet etching patterned sapphire substrate,” IEEE Photon. Technol. Lett. 18(10), 1152–1154 (2006) [20] Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94(11), 111109 (2009) [21] S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa and H. Kudo, “Internal quantum efficiency of highly-efficient InGaN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003) [22] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984) [23] Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu and J. J. Huang, “Optical Properties of the Partially Strain Relaxed InGaN/GaN Light-Emitting Diodes Induced by p-Type GaN Surface Texturing,” IEEE Electron Device Lett., 32(2), 182–184 (2011) [24] 9. Shen, Y., G. Mueller, S. Watanabe, N. Gardner, A. Munkholm and M. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007) [25] U ̈mit O ̈zgu ̈r, Member IEEE, Huiyong Liu, Xing Li, Xianfeng Ni and Hadis Morkoc, “GaN-Based Light-Emitting Diodes: Efficiency at High Injection Levels,” Proceedings of the IEEE 98(7), 0018–9219 (2010) [26] S. Ghosh, P. Bhattacharya , E. Stoner, J. Singh, H. Jiang, S. Nuttinck and J. Laskar, “Temperature-dependent measurement of Auger recombination in self-organized In0.4Ga0.6As/GaAs quantum dots,” Appl. Phys. Lett. 79(6), 722(2001) [27] L. Y. Chen, Y. Y. Huang, C. H. Chang, Y. H. Sun, Y. W. Cheng, M. Y. Ke, C. P. Chen and J. J. Huang, “High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes, ” Opt. Express 18(8), 7664–7669 (2010) [28] A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric and D. Jalabert, “Micro-Raman characterization of InxGa1-xN/GaN/Al2O3 heterostructures, ” Phys. Rev. B 72(15), 155336 (2005) [29] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amaro, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997) [30] A. Link, K. Bitzer, W. Limmer, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, D. G. Ebling and K.W. Benz, “ Temperature dependence of the E2 and A1(LO) phonons in GaN and AlN,” J. Appl. Phys. 86(11), 6256 (1999) [31] Y. R. Wu, M. Singh and J. Singh, “Gate leakage suppression and contact engineering in nitride heterostructures,” J. Appl. Phys. 94(9), 5826–5831 (2003) [32] C. H. Chang, L. Y. Chen, L. C. Huang, Y. T. Wang, T. C. Lu and J. J. Huang, “Effects of Strains and Defects on the Internal Quantum Efficiency of InGaN/GaN Nanorod Light Emitting Diodes,” IEEE J. Quantum Electron. 48(4), 551–556 (2012) [33] R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Du ̈hler, B. Dutta and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett. 74(16), 2256–2258 (1999) [34] G. Keiser, “Optical fiber communications 3rd Edition,” McGraw-Hill New York. [35] S. Maxim, C. Ashay, K. Alexey, Z. Jianping, A. Vinod, S. Grigory, K. M. Asif, “Differential carrier lifetime in AlGaN based multiple quantum well deep UV light emitting diodes at 325 nm,” Jpn. J. Appl. Phys. 41(Part 2, No. 10B) L1146-L1148 (2002) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56468 | - |
dc.description.abstract | 隨著寬能隙氮化鎵發光二極體的蓬勃發展,在固態照明和光通訊相關領域受到了極大的關注。目前有許多研究團隊提出各式各樣的奈米結構技術來提升效率,而其中又以奈米柱發光二極體最受矚目。本篇論文中,我們發展一種嶄新且具實用價值之奈米小球微影術用以製作具有p-i-n結構之奈米柱陣列,並以電漿輔助化學氣相沉積法成長二氧化矽做為奈米柱側壁保護層,接著利用化學機械研磨方式去除包覆於奈米柱頂端之二氧化矽以利後續金屬接觸層之製作。此奈米柱發光二極體已被證實能有效地釋放發光層間的壓縮應力。
目前常用來定義發光二極體內部量子效率的方法主要是透過低溫光致發光(photoluminescence)量測並假設當環境溫度非常低(接近0K)的時候,進行非輻射復合的載子數量會趨近於零,幾乎全部的載子都會進行輻射複合,因此定義此時的內部量子效率為100%。但是在我們低溫光致發光、低溫電致發光(electroluminescence)及低溫拉曼量測結果中發現,當溫度逐漸下降,每個元件缺陷逐漸被排除同時卻也伴隨著承受比室溫下更多的壓縮應力,因此我們提出了一個嶄新的方法來分析內部量子效率,此法不同於以往對於低溫的光致發光結果只歸因於缺陷的抑制,更將低溫下應力的因素一併考慮,故此法可幫助我們求出比以往更精確的內部量子效率。 除了在固態照明的應用,發光二極體另一個潛在的應用領域就是可見光通訊(Visible Light Communication),是目前尚在發展的研究技術。在這裡,我們藉由研製不同面積大小的奈米柱和平面結構發光二極體,探索電光(E-O)調製帶寬。在奈米等級的結構下,奈米柱發光二極體能有效的釋放應力並在空間上限制載子輸運,進而有機會降低載子壽命,使得二極體的電光響應速度得到改善。 | zh_TW |
dc.description.abstract | Recently, GaN-based wide bandgap light emitting diodes (LEDs) have been intensively developed and put applications in solid-state lighting and communication due to its superior optical and electrical characteristics. The InGaN/GaN nanorod light-emitting-diode array is one of the most popular structures. In this thesis, we demonstrated a novel and practical approach to fabricate InGaN/GaN nanorod LED arrays with p-i-n structure using nanosphere lithography for nanorod formation, PECVD (plasma-enhanced chemical vapor deposition) grown SiO2 layer for sidewall passivation, and chemical mechanical polishing (CMP) process for parallel metal contact. The nano-structure device has been proved to relax the compressive strain underneath the active layers effectively.
Nowadays, a commonly employed method to find IQE of a LED is by assuming complete frozen of defects at very low temperature and thus the IQE to be 100%. Despite the simplicity, the method may have underestimates other factors for IQE. According to our temperature-dependent Raman measurement, there is a severer strain effect accompanying the eliminating defects with decreasing temperature. Thus, we proposed a method by taking both defects and strain into consider and figured out more accurate IQE. We further discussed the external quantum efficiency and the light extraction efficiency on planar and nanorod LEDs. Another potential application of LEDs is for visible light communications (VLC) system, which is a rapidly growing research technology. Together in this work, nanorod and planar devices with different mesa area were fabricated to explore frequency response on the E-O modulation bandwidth. With a diameter in nanoscale, the p-i-n diode arrays may have advantages in strain relaxation and confinement of carrier transport due to spatial separation of nanorod which may lead to a shorter carrier lifetime thus faster response speed in nanorod LEDs. These properties in nano-structure LEDs may be further used for application in VLC system both in free space and fiber-based embodiments. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:30:04Z (GMT). No. of bitstreams: 1 ntu-102-R00941104-1.pdf: 2940264 bytes, checksum: 8b0123ac0e69ca7bfc2d8837b9d13994 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstracts IV Table of Contents VI List of Figures VIII List of Tables X Chapter One Introduction 1 1-1. Preface 1 1-2. Motivation 3 1-3. Nanorod fabrication 5 Chapter Two InGaN/GaN nanorod LEDs by nanosphere lithography and chemical mechanical polishing processes 8 2-1 InGaN/GaN MQW nanorod LEDs fabrication 8 2-2 Device structure and characteristics of nanorod LEDs 12 Chapter Three Characterization of strain and defect dependent internal quantum efficiency of InGaN/GaN nanorod LEDs 17 3-1 Preface 17 3-2 Device structure and characteristics 18 3-3 The model for obtaining IQE 18 3-4 Determination of internal quantum efficiency 23 3-4-1 Strain analysis by temperature-dependent Raman measurement 23 3-4-2 Temperature-dependent photoluminescence measurement 28 3-3-3 Calculation of optical efficiency 28 Chapter Four Frequency response of InGaN/GaN nanorod LEDs 32 4-1. Preface 32 4-2. Device Structure and characteristics 33 4-3. Response Speed of nanorod structures 36 4-4. Effect of nano-structure on carrier lifetime 40 Chapter Five Conclusion 49 References 51 | |
dc.language.iso | en | |
dc.title | 氮化鎵奈米柱發光二極體之光及頻率響應特性探討 | zh_TW |
dc.title | Characterization of Optical and Frequency Responses of InGaN/GaN Nanorod Light Emitting Diodes | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳育任(Yuh-Renn Wu),楊志忠(Chih-Chung (C. C.),吳肇欣(Chao-Hsin Wu) | |
dc.subject.keyword | 氮化鎵,奈米柱,發光二極體,內部量子效率,光萃取效率,應力釋放,化學機械研磨,可見光通訊,電光調製帶寬,載子壽命, | zh_TW |
dc.subject.keyword | GaN,nanorod,light emitting diode,internal quantum efficiency,light extraction efficiency,strain relaxation,chemical mechanical polishing,visible light communication,E-O modulation bandwidth,carrier lifetime, | en |
dc.relation.page | 58 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。