請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56464完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李志中(Jyh-Jone Lee) | |
| dc.contributor.author | Cheng Yuan Wang | en |
| dc.contributor.author | 王政元 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:29:53Z | - |
| dc.date.available | 2015-08-31 | |
| dc.date.copyright | 2014-08-26 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-13 | |
| dc.identifier.citation | [1]Bathe, K. J., “Finite element formulations for large deformation dynamic analysis,” Int. Jnl. Num. method Engrg., vol. 9, pp. 353–386, 2005.
[2]Bathe, K. J., Finite Element Procedures, Prentice Hall, 1996. [3]Crisfield, M. A., and Shi, J., “A co-rotational element/time-integration strategy for non-linear dynamics,” Int. Jnl. Num. method Engrg., vol. 37, pp. 1897–1913, 1994. [4]Fallahi, B., “An enhanced computational scheme for the analysis of elastic mechanisms,” Computers & Structures, vol. 62, pp. 369–372, 1997. [5]Han, R. P. S., and Zhao, Z. C., “Dynamics of general flexible multibody system,” Int. Jnl. Num. method Engrg., vol. 30, pp. 77–97, 1990. [6]Kane, T. R., and Wang, C. F., “On the derivation of equations of motion,” Society for Industrial and Applied Mathematics, vol. 13, pp. 487–492, 1965. [7]Lee, M. G., Chen, C. I., “Numerical Solutions of A Flexible Structure by A Differential Algebraic Equations,” International Conference of Computational Methods in Sciences and Engineering, vol. 3, pp. 350–359, 2003. [8]Shabana, A. A., Computational Dynamics 3rd Edition, WILEY, New York, 2009. [9]Shabana, A. A., Dynamics of Multibody Systems 3rd Edition, Cambridge University Press, 2005. [10]Shabana, A. A., and Schwertassek, R., “Equivalence of the floating frame of reference approach and finite element formulations,” Int. J. Nonlin. Mech., vol. 33, pp. 417–432, 1998. [11]Saura, M., Celdran, A., Dopico, D., and Cuadrado, J., “Computational structural analysis of planar multibody systems with lower and higher kinematic pairs,” Mech. Mach. Theory, vol. 71, pp. 79–92, 2014. [12]Schiehlen, W., Guse, N., and Seifried, R., “Multibody dynamics in computational mechanics and engineering applications,” Comput. Meth. Appl. Mech. Eng., vol. 195, pp 5509–5522, 2006. [13]Wu, T. Y., Lee, J. J., and Ting, E. C., “Motion analysis of structures (MAS) for flexible multibody systems: planar motion of solids,” Multibody System Dynamics, vol. 20, pp. 197–221, 2008. [14]Wasfy, T. M., and Noor, A. K., “Computational strategies for flexible multibody systems,” Appl. Mech. Rev., vol. 56, pp. 553–613, 2003. [15]Wang, J. M., Fleet, D. J., and Hertzmann A., “Gaussian process dynamical models,” Neural Information Processing Systems, vol. 18, pp. 1441–1448, 2005. [16]Wallrapp, O., “Linearized flexible multibody dynamics including geometric stiffening effects,” Mech. Struct. Mach., vol. 19, pp. 385–409, 1991. [17]吳國榮, 鐘偉芳, 梁以德, “三維柔性多體梁系統非線性動力回應分析,” 振動與衝擊, vol. 25, pp. 24–27, 2006. [18]潘振寬, 趙維加, 洪嘉振, 劉延柱, “多體系統動力學微分�代數方程組數值方法,” 力學進展, vol. 26, pp. 28–40, 1996. [19]田強, 張雲清, 陳立平, 覃剛, “柔性多體系統動力學絕對節點坐標方法研究進展,” 力學進展, vol. 40, pp. 189–201, 2010. [20]丁承先, 段元鋒, 吳東岳, 向量式結構力學, 科學出版社, 北京, 2012. [21]陸佑方, 柔性多體系統動力學, 高等教育出版社, 北京, 1996. [22]蔡文昌, 向量式分析求解高度非線性二維剛架結構問題, 碩士論文, 台灣大學, 台北市, 2009. [23]孫緯翰, 應用向量式有限元法於撓性機構的運動分析, 碩士論文, 台灣大學, 台北市, 2004. [24]廖奕翔, 平面機構具間隙接頭與其斷裂之研究, 碩士論文, 台灣大學, 台北市, 2011. [25]陳仲恩, 運動解析應用於三維機構分析, 碩士論文, 台灣大學, 台北市, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56464 | - |
| dc.description.abstract | 本論文旨在使用向量式有限元與剛體動力學求解機構問題。不同於一般僅使用剛體或柔體的多體動力學,本文在計算運動對時使用剛體動力學,而其他柔體部分則使用向量式分析法。
剛體動力分析中,本文將不同運動對的約束方程式定出後,依拉格朗日乘數法帶入虛功方程式中,得出一個微分代數方程式,再透過時間積分及牛頓迭代法求解。在向量式有限元中,則以點值描述方式選取一組質點作為構件運動的描述方式,質點間以結構單元連接。質點的運動方程式則各別定義在每一組相連的途徑單元上;質點間的互制力則由桿件元的內力計算得到。為了求得桿件元的內力,透過逆向運動獲得純變形,並依此建立變形坐標計算應變,透過應力與應變關係及虛功等效關係與平衡關係後即可求得等效節點內力。利用集成,將內力帶入運動方程式後,即可透過時間積分逐步求解,獲得完整的運動分析。 為將剛體與柔體耦合,向量式有限元使用點值描述的特色可以直接與剛體連接,故僅需讓剛體與柔體連接的點共用一個質點參數,即可達到耦合效果。經過上述耦合方式,相較傳統有限元處理約束時,需建立完整的系統矩陣,使用剛體與柔體耦合處理運動對約束,將運動對分開處理後,能減少矩陣的階數且能夠降低計算困難。本文最後將以幾個例題對剛體與柔體耦合分析法進行驗證,比較結果後發現與文獻及商用軟體模擬結果相近,可以證明該方法的可行性及實用性。 | zh_TW |
| dc.description.abstract | The gist of this thesis is to analyze the motion of planar; by the vector form analysis and rigid body dynamics. Rather than using only rigid or flexible multi-body system dynamics, in this thesis, we solve the problem of kinematic pairs using the rigid body dynamics while the flexible parts using the vector form analysis.
In rigid body dynamics, constraint equations for different kinematic pairs are firstly established. Then, the Lagrange multiplier is adopted into the formulation of principles of virtual work, and DAEs are obtained. Then, it could be solved by time integration and Newton-Raphson iteration method. In Vector Form Intrinsic Finite Element (VFIFE), a group of mass points to represent the components of mechanisms using point value description is established, then two neighboring mass points with a structural element are connected. The equations of motion could be defined by path elements, and the force between mass points is obtained by the inertia force of structure elements. Using the inverted motion to obtain the pure deformation and co-rotation coordinate for strain, then internal force could be obtained. The motion analysis of mechanisms can be obtained by the equations of motion and appropriate time integration. The method is verified by some example. The results are also compare with those in reference and by ANSYS. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:29:53Z (GMT). No. of bitstreams: 1 ntu-103-R01522624-1.pdf: 1232682 bytes, checksum: 094e118f5c6f28c6f9601af7aa9f9f65 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II 英文摘要 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 5 1.3 內容簡介 6 第二章 剛體動力學 7 2.1 前言 7 2.2 虛功原理 8 2.3 增廣矩陣 9 2.4 時間積分與牛頓迭代 11 2.4-1 時間積分法 11 2.4-2 牛頓迭代法 13 2.5 計算流程 15 第三章 向量式有限元 16 3.1 前言 16 3.2 基本假設 17 3.2-1 點值描述 17 3.2-2 途徑單元 19 3.2-3 逆向運動 20 3.3 節點質量 22 3.4 運動方程式 23 3.5 內力計算 24 3.5-1 等效節點內力 24 3.5-2 純變形 25 3.5-3 平面軸力計算 26 3.5-4 桿件元的變形函數 28 3.5-5 質點內力計算 30 3.6 外力計算 33 3.7 時間積分 34 第四章 剛體與柔體之耦合 36 4.1 前言 36 4.2 耦合方式 37 4.3 剛體動力學耦合需求 38 4.4 向量式有限元耦合需求 40 第五章 運動對處理 42 5.1 前言 42 5.2 旋轉對 43 5.3 滑動對 45 5.4 滑槽對 47 第六章 數值算例 50 6.1 前言 50 6.2 算例1:以旋轉對模擬曲柄滑塊機構 50 6.3 算例2:以平移對模擬倒置滑塊曲柄機構 54 6.4 算例3:以滑槽對模擬曲柄滑塊機構 58 6.5 算例4:以多種運動對模擬曲柄滑塊機構 61 6.6 算例5:以多種運動對模擬倒置滑塊曲柄機構 64 第七章 結論與建議 67 7.1 結論 67 7.2 建議與未來方向 68 參考文獻 69 附錄 72 A. 牛頓迭代法 72 B. 程式撰寫處理 73 C. 程式輸入檔使用說明 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 向量式分析 | zh_TW |
| dc.subject | 向量式有限元 | zh_TW |
| dc.subject | 拉格朗日乘數 | zh_TW |
| dc.subject | 柔性多體系?動力學 | zh_TW |
| dc.subject | 計算運動學 | zh_TW |
| dc.subject | Vector Form Analysis | en |
| dc.subject | VFIFE | en |
| dc.subject | Lagrange Multiplier | en |
| dc.subject | Flexible Multi-body System Dynamics | en |
| dc.subject | Computational Dynamics | en |
| dc.title | 以向量式分析及剛體動力學分析平面機構運動 | zh_TW |
| dc.title | Motion Analysis of Mechanisms Using Vector Form Analysis and Rigid Body Dynamics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳文方(Wen-Fang Wu),吳東岳(Tung-Yueh Wu) | |
| dc.subject.keyword | 向量式分析,向量式有限元,拉格朗日乘數,柔性多體系?動力學,計算運動學, | zh_TW |
| dc.subject.keyword | Vector Form Analysis,VFIFE,Lagrange Multiplier,Flexible Multi-body System Dynamics,Computational Dynamics, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
