Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56457
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李雨(U Lei)
dc.contributor.authorBin-Lun Hsiehen
dc.contributor.author謝秉倫zh_TW
dc.date.accessioned2021-06-16T05:29:32Z-
dc.date.available2014-08-31
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation[1] Choi, Stephen U. S., “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, D. A. Singer and H. P. Wang, Eds., American Society of Mechanical Engineers, New York, FED–231/MD-66: 99–105 ,1995.
[2] Maxwell, J. C., “A treatise on electricity and magnetism,” Clarendon Press, Oxford 1891.
[3] Wen, D. and Ding, Y., “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” Int. J. Heat and Mass Transfer 47, 5181–5188, 2004.
[4] Yu, W. and Choi, S.U.S., “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model,” J. Nanoparticle Res., 5, 167-171, 2003.
[5] Keblinski, P., Phillpot, S., Choi, S. and Eastman, J., “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” Int. J. Heat and Mass Transfer, 45, 855-863, 2002.
[6] Prasher, R., Song, D., Wang, J. and Phelan, P., “Measurements of nanofluid viscosity and its implications for thermal applications,” Appl. Phys. Lett., 89, 133108, 2006.
[7] Prasher, R., Bhattacharya, P. and Phelan, P. E., “Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids,” ASME J. Heat Transfer 128, 2006.
[8] Heris, S. Z., Etemad, S. G. and Esfahany,M. N., “Experimental investigation of oxide nanofluids laminar flow convective heat transfer,” Int. Comm. Heat and Mass Transfer 33, 529-535, 2006.
[9] Wang, X., Xu, X. and Choi, S. U. S. “Thermal conductivity of nanoparticle–fluid mixture”, J. Thermophys. Heat Transfer 13, 474–80, 1999.
[10] Xuan, Y. and Li, Q., “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, 21, 58–64, 2000.
[11] Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A., “Anomalously thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79, 2252–4, 2001.
[12] Li, C. H. and Peterson, G. P., “Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids),” J. Appl. Phys. 99, 0843 14,2006.
[13] Duangthongsuk W. and Wongwises S., “Measurement of temperature-dependent thermal conductivity and viscosity of -water nanofluids,” Experimental Thermal and Fluid Science 33, 706–714, 2009.
[14] Pak, B. and Cho, Y., “Hydrodynamic and heat transfer study of dispersed fluid with submicron metallic oxide particles,” Exp. Heat Transfer, 11, 151-170, 1998.
[15] Wamkam, C. T., Opoku, M. K., Hong, H. and Smith, P., “Effects of pH on heat transfer nanofluids containing and nanoparticles,” J. Appl. Phys. 109, 024305, 2011.
[16] Wu, W., Liu, S., Hong, H. and Chen, S., “Stability Analysis of Water-based Nanofluids Prepared by Using Supersonic Dispersion Method,” Advanced Materials Research, 383-390, 6174-6180, 2012.
[17] Wong, K. V. and De Leon, O., “Applications of Nanofluids: Current and Future,” Advances in Mechanical Engineering, 519659, 2010.
[18] Mahendran, V. and Philip, J., “Nanofluid based optical sensor for rapid visual inspection of defects in ferromagnetic materials,” Appl. Phys. Lett., 100, 073104, 2012.
[19] Mahendran, V. and Philip, J., “Spectral response of magnetic nanofluid to toxic cations,” Appl. Phys. Lett., 102, 163109, 2013.
[20] Murshed, S. M. S., Leong, K. C. and Yang, C., “Enhanced thermal conductivity of -water based nanofluids,” Int. J. Thermal Sciences, 44, 367-373, 2005.
[21] Nagasaka, Y. and Nagashima, A., “Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method,” J. Phys. E: Sci. Instrum., 14, 1435-1440, 1981.
[22] Healy, J. J., de Groot, J. J. and Kestin, J., “The theory of the transient hot-wire method for measuring thermal conductivity,” Physica C 82, 392-408, 1976.
[23] Nagasaka, Y. and Nagashima, A., “Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by the transient hotwire method,” Review of Scientific Instruments 52, 229-232, 1981.
[24] Paul, G., Chopkar, M., Manna, I. and Das, P. K., “Techniques for measuring the thermal conductivity of nanofluids: a review,” Renewable and Sustainable Energy Reviews, 14, 1913-1924, 2010.
[25] J. Jiang, Oberdӧrster, G. and Biswas, P., “Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies,” J. Nanopart. Res. 11, 77–89, 2009.
[26] Bentley, J. P., “Temperature sensor characteristics and measurement system design,” J. Phys. E: Sci. Instrum., 17, 1984.
[27] Cengel, Y. A., “Heat and mass transfer – A practical approach,” 3rd ed., Mc Graw Hill, 2007.
[28] Timofeeva, E. V., Gavrilov, A. N., McCloskey, J. M. and Tolmachev, Y. V., “Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory,” Phys. review E 76, 061203, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56457-
dc.description.abstract奈米流體乃懸浮有奈米粒子的液體,其吸引研究者注目的一項原因為其熱傳導係數會因小量粒子的加入而明顯上升,但其機制至今仍未全面明朗。本論文的工作先以暫態熱線法與惠斯通電橋建構實驗架構、並加以驗證,再對以二氧化鈦奈米粒子與去離子水合成的奈米流體進行多項參數下熱傳導係數的量測,共獲致如下結果。改變奈米流體的單體粒子尺寸並不會明顯提高其熱傳導係數;在低體積濃度下,奈米粒子加入之濃度會明顯增加熱傳導係數;奈米流體容易受到老化效應之影響,其熱傳導係數之增益量隨時間而逐漸遞減,其主因為出現群聚之現象所致;當奈米流體的酸鹼值到達近等電位點時,其奈米粒子周圍電雙層之效應會被消除,而使其熱傳導係數達最高值。zh_TW
dc.description.abstractNanofluid is a liquid suspended with nano-sized particles. It attracts many researchers because the heat conductivity of nanofluids can be enhanced significantly by adding a tiny amount of nano particles into the liquid. However, the mechanisms for the enhancement are still not fully understood. An experimental apparatus was built successfully in this thesis using transient hot wire method incorporated with Wheatstone bridge. The apparatus was validated and applied to measuring the heat conductivity of -water nanofluids for a variety of parameters. The main findings are as follows. The heat conductivity of nanofluids depends weakly on the monomer size, but increases significantly with the volume fraction of the nanofluids, provided the volume fraction is sufficiently low. Aging effect is significant, which reduces the heat conductivity with time because of the agglomeration of particles. The heat conductivity is maximized when the PH value meets the isoelectric point of the nanofluid.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:29:32Z (GMT). No. of bitstreams: 1
ntu-103-R01543034-1.pdf: 2155614 bytes, checksum: 9e3b70ad37e57b66a238a7b0428b9c16 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝…………………………………………………………………………………….i
摘要……………………………………………………………………………………ii
Abstract……………………………………………………………………………….iii
目錄…………………………………………………………………………………...iv
圖目錄………………………………………………………………………………...vi
表目錄………………………………………………………………………………...ix
符號說明………………………………………………………………………………x
第一章 緒論…………………………………………………………………………1
1-1 研究動機與背景…………………………………………………………...2
1-2 文獻回顧…………………………………………………………………...3
1-2.1 等效熱傳導係數….…………………………………………………...3
1-2.2 布朗運動…………………………………………………....................5
1-2.3 奈米粒子體積分率……………………………………………………6
1-2.4 基礎溶液特性…………………………………………………………7
1-2.5 奈米流體實際應用……………………………………………………8
1-3 本文結構…………………………………………………………………...9
第二章 理論………………………………………………………………………..11
2-1 理論基礎…………………………………………………………………..13
2-2 實驗之數學模型…………………………………………………………..14
2-3 披覆絕緣層熱線之數學模型…………………………………………….16
第三章 實驗方法與設備…………………………………………………………..20
3-1 奈米流體之選擇………...………………………………………………..20
3-2 奈米流體配製方法…...…………………………………………………..22
3-3 暫態熱線法裝置...………………………………………………………..24
3-3.1 熱線材料選擇………………………………………………………..24
3-3.2 惠斯通電橋…………………………………………………………..25
3-3.2 實驗架構設計………………………………………………………..25
3-4 實驗架構參數…………………………………………………………….26
3-4.1 白金線電阻與溫度係數量測……………………………….……….26
3-4.2 外部電壓選擇………………………………………………………..28
3-5 確立實驗架構…………………………………………………………….29
3-5.1 實驗數據與理論值比較…………………………………….……….29
3-5.2 超音波震洗時間……………………………………………………..30
3-6 導電度量測……………………………………………………………….31
第四章 實驗結果…………………………………………………………………..32
4-1 濃度及單體粒徑改變下之熱傳導係數增益………...…………………..32
4-2 與文獻結果之比較……………………………………………………….34
4-3 老化效應造成之熱傳導係數變異……………………………………….36
4-4 基礎溶液導電度與熱傳導係數之關聯性……………………………….40
4-5 分析改變基礎溶液酸鹼值與熱傳導係數之關聯性…………………….46
第五章 結論與未來展望…………………………………………………………..49
5-1 結論…………………………...…………………………………………..49
5-2 未來展望………………………………………………………………….50
參考文獻……………………………………………………………………………..51
dc.language.isozh-TW
dc.subject熱傳導係數zh_TW
dc.subject二氧化鈦奈米流體zh_TW
dc.subject暫態熱線法zh_TW
dc.subjecttransient hot-wire methoden
dc.subjectthermal conductivityen
dc.subjectTiO2 nanofluidsen
dc.title二氧化鈦奈米流體熱傳導性質的實驗探討zh_TW
dc.titleExperimental study of thermal conductivity of titanium oxide nanofluidsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee田華忠,楊政穎
dc.subject.keyword二氧化鈦奈米流體,暫態熱線法,熱傳導係數,zh_TW
dc.subject.keywordTiO2 nanofluids,transient hot-wire method,thermal conductivity,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved