Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56436
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖英志(Ying-Chih Liao)
dc.contributor.authorYu-Chih Changen
dc.contributor.author張宇志zh_TW
dc.date.accessioned2021-06-16T05:28:32Z-
dc.date.available2016-08-17
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation1. D. Sung, A.d.l.F.Vornbrock and V. Subramanian, <Scaling and Optimization of Gravure-Printed Silver Nanoparticle Lines for Printed Electronics>. IEEE Transactions on Components and Packaging Technologies, 2010. 33.
2. E. Hrehorova, M. Rebros, A. Pekarovicova, B. Bazuin, A. Ranganathan,S. Garner, G. Merz, J. Tosch, and R. Boudreau, <Gravure Printing of Conductive Inks> Journal of Display Technology, 2011. 7: p. 318-324.
3. R. Kitsomboonloha, S.J.S. Morris, X. Rong and V. Subramanian, <Femtoliter-scale Patterning by High-speed, Highly Scaled Inverse Gravure Printing> Langmuir, 2012. 28(48): p. 16711-23.
4. M. Pudas, J. Hagberg and S. Leppavuori, <The Absorption Ink Transfer Mechanism of Gravure Offset Printing for Electronic Circuitry> IEEE Transactions on Electronics Packaging Manudfacturing,, 2002. 25: p. 335-343.
5. M. Pudas, J. Hagberg, and S. Leppavuori, <Printing Parameters and Ink Components Affecting Ultra-fine-line Gravure-offset Printing for Electronics Applications> Journal of the European Ceramic Society, 2004. 24(10-11): p. 2943-2950.
6. M. Pudas, <Gravure-offset Printing in the Manufacture of Ultra-fine-line Thick-films for Electronics> 2004.
7. J. Perelaer et al., <Printed Electronics: the Challenges Involved in Printing Devices, Interconnects, and Contacts Based on Inorganic Materials> Journal of Materials Chemistry, 2010. 20(39): p. 8446.
8. F.C. Krebs, <Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques> Solar Energy Materials and Solar Cells, 2009. 93(4): p. 394-412.
9. D.H. Ahmed, H.J. Sung and D Kim, <Simulation of Non-Newtonian Ink Transfer between Two Separating Plates for Gravure-offset Printing> International Journal of Heat and Fluid Flow, 2011. 32(1): p. 298-307.
10. F. Ghadiri et al., <Non-Newtonian Ink Transfer in Gravure–offset Printing> International Journal of Heat and Fluid Flow, 2011. 32(1): p. 308-317.
11. W.X. Huang et al., <Simulation of Liquid Transfer between Separating Walls for Modeling Micro-gravure-offset Printing> International Journal of Heat and Fluid Flow, 2008. 29(5): p. 1436-1446.
12. H.W. Kang et al., <Liquid Transfer between Two Separating Plates for Micro-gravure-offset Printing> Journal of Micromechanics and Microengineering, 2009. 19(1): p. 015025.
13. S. Dodds, M.d.S. Carvalho and S. Kumar, <Stretching and Slipping of Liquid Bridges near Plates and Cavities> Physics of Fluids, 2009. 21(9): p. 092103.
14. S.S. Park et al., <The FEM Based Liquid Transfer Model in Gravure Offset Printing Using Phase Field Method> Microsystem Technologies, 2012. 18(12): p. 2027-2034.
15. C. Gupta, G.A.Mensing, M.A.Shannon and P.J.A. Kenis, <Double Transfer Printing of Small Volumes of Liquid> 2007. 23: p. 2906-2914.
16. D. Bonn et al., <Wetting and Spreading> Reviews of Modern Physics, 2009. 81(2): p. 739-805.
17. T. Young, <An Essay on the Cohesion of Fluids> Philosophical Transactions of the Royal Society of London, 1805: p. 65-87.
18. R.N. Wenzel, <Resistance of Solid Surfaces to Wetting by Water> Ind Eng Chem, 1936. 28: p. 988-994.
19. A.B.D.Cassie and S. Baxter, <Wettablity of Porous Surfaces> T Faraday Soc, 1944. 40: p. 0546-0550.
20. J.N. Israelachvili, <Intermolecular and Surface Forces> Academic Press: New York., 1985.
21. J.F. Joanny and P.G.d. Gennes, <A Model for Contact-Angle Hysteresis> J Chem Phys 1984. 81: p. 552-562.
22. P.G.d. Gennes, F. Brochard-Wyart, D. Quere, <Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves> 2004.
23. W. Asamson, <I. Capillary, The Equation of Young and Laplace> Physical Chemistry of Surfaces, 1960: p. 4-6.
24. Chadov, E.D.Y.a.A.V., Kolloidn. Zh., 1983. 45: p. 1183.
25. Yakhnin, A.V.C.a.E.D., Kolloidn. Zh, 1979. 41: p. 817.
26. H. Chen, T. Tang and A. Amirfazli, <Liquid Transfer Mechanism between Two Surfaces and the Role of Contact Angles> Soft Matter, 2014. 10(15): p. 2503-7.
27. H. Chen, A. Amirfazli and T. Tang, <Modeling Liquid Bridge between Surfaces with Contact Angle Hysteresis> Langmuir, 2013. 29(10): p. 3310-9.
28. R.V. Sedev, C.J. Budziak, J.G. Petrov and A.W. Neumann, <Dynamic Contact Angles at Low Velocities> JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1993. 159: p. 392-399.
29. P.G. Petrov and J.G. Petrov, <Extrapolated Dynamic Contact Angle and Viscous Deformation of a Steady Moving Meniscus at a Vertical Flat Wall> Langmuir, 1995. 11: p. 3261-3268.
30. J.G. Petrov, J. Ralston, M. Schneemilch and R.A. Hayes, < Dynamics of Partial Wetting and Dewetting in Well-Defined Systems> J. Phys. Chem. B, 2003. 107: p. 1634-1645.
31. J.G. Petrov, J. Ralston, M. Schneemilch and R.A. Hayes, <Dynamics of Partial Wetting and Dewetting of an Amorphous Fluoropolymer by Pure Liquids> Langmuir, 2003. 19: p. 2795-2801.
32. S.Y. Lin, K. McKeigue and C. Maldarelli, <Diffusion-Controlled Surfactant Adsorption Studied by Pendant Drop Digitization> AIChE J., 1990. 36: p. 1785-1795.
33. J.B. Segur and H.E. Oberstar, <Viscosity of Glycerol and Its Aqueous Solutions> Industrial & Engineering Chemistry, 1951. 43(9): p. 2117-2120.
34. R.G. Picknett and R. Bexon, <The Evaporation of Sessile or Pendant Drops in Still Air> J. Colloid Interface Sci., 1977. 61: p. 336-350.
35. C. Bourges-Monnier and M.E.R. Shanahan, <Influence of Evaporation on Contact Angle> Langmuir, 1995. 11: p. 2820-2829.
36. S. Dodds, M. Carvalho and S. Kumar, <Stretching liquid bridges with moving contact lines: The role of inertia> Physics of Fluids, 2011. 23(9): p. 092101.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56436-
dc.description.abstract凹版轉印技術(gravure offset printing)以其高輸出速率與不錯的解析度而聞名,現今此一技術更將拓展到印刷電子上。然而其未達100 %轉移率使得凹版內的導電膠無法完全由凹版中轉移到目標基材上,使得印刷成品出現像是斷線、汙點之類的缺陷,可能造成短路或是斷路等狀況,降低產品的良率。
為了解決此一問題,本研究利用兩分離平板間的液橋對凹版轉印的過程作近似,並探討其於上下兩板上之接觸線的移動機制和接觸角的變化。其中兩板間的液滴使用甘油。為了觀察其接觸線和接觸角,吾人將定量的甘油(或甘油水溶液)置於兩平板間,接觸至一定距離後再移動上板拉伸液橋使其一分為二。過程由CCD攝影機拍攝下來,並使用程式記錄液橋之三相接觸線和接觸角的變化。通常,接觸線的移動與否與液體於基材上的後退角有關;實驗結果指出,接觸角在液橋拉伸過程中會先下降到一個最小值再上升,此最小值與拉伸速度存在一關係式。且當接觸角上升到液體在基材上的後退角時,邊界便會停滯不動。此一停滯的寬度也會隨著速度的增加而增加。這一個停滯的寬度與速度的變化趨勢,就會在不同基材組合下對轉移率就會造成不同的影響。
若能將相同的實驗結論套用在實際的凹版轉印研究上,便可找出提升轉移率的方法,使相關技術之缺陷減少、增加產品良率,以達到提升其競爭力、造福人群之目的。
zh_TW
dc.description.abstractIn recent years, gravure offset printing has received great attention for its high throughput rate and fine quality for printed electronics. However, as the dimensions of printed features decrease, the ink left over in the patterned gravures usually dries quickly and leads to defects, such as undesired dots or broken lines. These defects not only deteriorate the printing quality but also shorten the life time of gravures. One way to solve this problem is to increase the transfer ratio, which is the volumetric ratio of the liquid transferred from the gravure to target media.
To study the fundamental physics of liquid transfer phenomena in the printing process, a liquid bridge is used in this study for its simple geometry. The stretching process of a liquid bridge between two separating large plates is recorded by a CCD camera. Image analyses are performed to obtain the transient interfacial profiles of liquid bridges. From the experiment results, we observe that the contact angle first decrease to a minimum value even below the receding angle, and then increase until the liquid bridge breaks up. The minimum contact angle has an exponential relationship with the top plate’s velocity. Furthermore, the boundaries on both sides stop receding when the contact angle increases to the receding angle. Also, when the top plate’s velocity increases, the boundaries stop at larger values. This phenomenon makes the transfer ratio vary differently in different substrates combination.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:28:32Z (GMT). No. of bitstreams: 1
ntu-103-R01524070-1.pdf: 4421746 bytes, checksum: ebf8dd0dc8b924028431a514308b0db0 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents謝誌 I
摘要 II
Abstract III
目 錄 V
圖目錄 VII
表目錄 XI
符號表 XII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 論文架構 4
第二章 文獻回顧 5
2.1 液態薄膜之界面現象 5
2.2 兩板間的液體轉移 11
第三章 實驗系統程序 16
3.1實驗藥品與儀器介紹 16
3.2實驗流程 23
第四章 液體於兩平板間的拉伸過程 26
4.1 純甘油於兩平板間之拉伸過程 26
4.2 甘油水溶液於兩PET平板間之拉伸過程 32
4.3 純甘油溶液於疏水性基材上之拉伸過程 36
4.4拉伸過程中之最小角度 43
第五章 液橋邊界後退機制與轉移率 49
5.1 液橋邊界後退機制之討論 49
5.2 液體轉移率之探討 53
第六章 結論 56
第七章 未來展望 58
參考文獻 59
附錄 62
dc.language.isozh-TW
dc.subject遲滯現象zh_TW
dc.subject轉移率zh_TW
dc.subject液橋zh_TW
dc.subject動態接觸角zh_TW
dc.subjecttransfer ratioen
dc.subjecthysteresisen
dc.subjectdynamic contact angleen
dc.subjectliquid bridgeen
dc.title兩平板間液體轉移之研究zh_TW
dc.titleLiquid Transfer between Two Separating Platesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳立仁(Li-Jen Chen),王安邦(An-Bang Wang)
dc.subject.keyword轉移率,液橋,動態接觸角,遲滯現象,zh_TW
dc.subject.keywordtransfer ratio,liquid bridge,dynamic contact angle,hysteresis,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved