請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56410完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李琳山(Lin-Shan Lee) | |
| dc.contributor.author | Yun-Chiao Li | en |
| dc.contributor.author | 李昀樵 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:27:18Z | - |
| dc.date.available | 2014-08-31 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-14 | |
| dc.identifier.citation | [1] Yaodong Zhang and James R Glass, “Unsupervised spoken keyword spotting via segmental dtw on gaussian posteriorgrams,” in Automatic Speech Recognition & Understanding, 2009. ASRU 2009. IEEE Workshop on. IEEE, 2009, pp. 398–403.
[2] Ciprian Chelba, Timothy J Hazen, and Murat Sarac﹐lar, “Retrieval and browsing of spoken content,” Signal Processing Magazine, IEEE, vol. 25, no. 3, pp. 39–49, 2008. [3] Lin-shan Lee and Berlin Chen, “Spoken document understanding and organization,” Signal Processing Magazine, IEEE, vol. 22, no. 5, pp. 42–60, 2005. [4] Murat Saraclar and Richard Sproat, “Lattice-based search for spoken utterance retrieval,” Urbana, vol. 51, pp. 61801. [5] ChengXiang Zhai, “Statistical language models for information retrieval,” Synthesis Lectures on Human Language Technologies, vol. 1, no. 1, pp. 1–141, 2008. [6] Tee Kiah Chia, Khe Chai Sim, Haizhou Li, and Hwee Tou Ng, “Statistical latticebased spoken document retrieval,” ACM Transactions on Information Systems (TOIS), vol. 28, no. 1, pp. 2, 2010. [7] Chengxiang Zhai and John Lafferty, “A study of smoothing methods for language models applied to ad hoc information retrieval,” in Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2001, pp. 334–342. [8] Chun-an Chan and Lin-shan Lee, “Unsupervised spoken-term detection with spoken queries using segment-based dynamic time warping.,” in INTERSPEECH, 2010, pp. 693–696. [9] Timothy J Hazen, Wade Shen, and Christopher White, “Query-by-example spoken term detection using phonetic posteriorgram templates,” in Automatic Speech Recognition & Understanding, 2009. ASRU 2009. IEEE Workshop on. IEEE, 2009, pp. 421–426. [10] John S Garofolo, Cedric GP Auzanne, and Ellen M Voorhees, “The trec spoken document retrieval track: A success story.,” . [11] Ian Ruthven and Mounia Lalmas, “A survey on the use of relevance feedback for information access systems,” The Knowledge Engineering Review, vol. 18, no. 02, pp. 95–145, 2003. [12] Gerard Salton, Anita Wong, and Chung-Shu Yang, “A vector space model for automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp. 613–620, 1975. [13] Chengxiang Zhai and John Lafferty, “Model-based feedback in the language modeling approach to information retrieval,” in Proceedings of the tenth international conference on Information and knowledge management. ACM, 2001, pp. 403–410. [14] Stephen E Robertson and K Sparck Jones, “Relevance weighting of search terms,” Journal of the American Society for Information science, vol. 27, no. 3, pp. 129–146, 1976. [15] Simon Tong and Edward Chang, “Support vector machine active learning for image retrieval,” in Proceedings of the ninth ACM international conference on Multimedia. ACM, 2001, pp. 107–118. [16] King-Shy Goh, Edward Y Chang, and Wei-Cheng Lai, “Multimodal conceptdependent active learning for image retrieval,” in Proceedings of the 12th annual ACM international conference on Multimedia. ACM, 2004, pp. 564–571. [17] Jingrui He, Hanghang Tong, Mingjing Li, Hong-Jiang Zhang, and Changshui Zhang, “Mean version space: a new active learning method for content-based image retrieval,” in Proceedings of the 6th ACM SIGMM international workshop on Multimedia information retrieval. ACM, 2004, pp. 15–22. [18] Diane Kelly and Jaime Teevan, “Implicit feedback for inferring user preference: a bibliography,” in ACM SIGIR Forum. ACM, 2003, vol. 37, pp. 18–28. [19] Oren Kurland, Lillian Lee, and Carmel Domshlak, “Better than the real thing?: iterative pseudo-query processing using cluster-based language models,” in Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2005, pp. 19–26. [20] Jinxi Xu and W Bruce Croft, “Query expansion using local and global document analysis,” in Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 1996, pp. 4–11. [21] Shipeng Yu, Deng Cai, Ji-Rong Wen, and Wei-Ying Ma, “Improving pseudorelevance feedback in web information retrieval using web page segmentation,” in Proceedings of the 12th international conference on World Wide Web. ACM, 2003, pp. 11–18. [22] Tetsuya Sakai, Toshihiko Manabe, and Makoto Koyama, “Flexible pseudo-relevance feedback via selective sampling,” ACM Transactions on Asian Language Information Processing (TALIP), vol. 4, no. 2, pp. 111–135, 2005. [23] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson, “Selecting good expansion terms for pseudo-relevance feedback,” in Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2008, pp. 243–250. [24] Kyung Soon Lee, W Bruce Croft, and James Allan, “A cluster-based resampling method for pseudo-relevance feedback,” in Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2008, pp. 235–242. [25] Yuanhua Lv and ChengXiang Zhai, “A comparative study of methods for estimating query language models with pseudo feedback,” in Proceedings of the 18th ACM conference on Information and knowledge management. ACM, 2009, pp. 1895–1898. [26] Yuanhua Lv and ChengXiang Zhai, “Positional relevance model for pseudorelevance feedback,” in Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval. ACM, 2010, pp. 579–586. [27] Aren Jansen, Kenneth Church, and Hynek Hermansky, “Towards spoken term discovery at scale with zero resources,” in INTERSPEECH, Takao Kobayashi, Keikichi Hirose, and Satoshi Nakamura, Eds. 2010, pp. 1676–1679, ISCA. [28] Mikael Bod’en, “A guide to recurrent neural networks and backpropagation,” The Dallas project, SICS technical report, 2002. [29] Tao Tao and ChengXiang Zhai, “Regularized estimation of mixture models for robust pseudo-relevance feedback,” in Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2006, pp. 162–169. [30] Victor Lavrenko and W Bruce Croft, “Relevance based language models,” in Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2001, pp. 120–127. [31] Carolina Parada, Abhinav Sethy, and Bhuvana Ramabhadran, “Query-by-example spoken term detection for oov terms,” in Automatic Speech Recognition & Understanding, 2009. ASRU 2009. IEEE Workshop on. IEEE, 2009, pp. 404–409. [32] Atta Norouzian, Aren Jansen, Richard C Rose, and Samuel Thomas, “Exploiting discriminative point process models for spoken term detection.,” in INTERSPEECH, 2012. [33] Hung-yi Lee, Po-wei Chou, and Lin-shan Lee, “Open-vocabulary retrieval of spoken content with shorter/longer queries considering word/subword-based acoustic feature similarity.,” in INTERSPEECH, 2012. [34] Hung-Yi Lee, Yun-Nung Chen, and Lin-Shan Lee, “Improved speech summarization and spoken term detection with graphical analysis of utterance similarities,” Proc. APSIPA, 2011. [35] Hung-yi Lee, Chia-ping Chen, and Lin-shan Lee, “Integrating recognition and retrieval with relevance feedback for spoken term detection,” Audio, Speech, and Language Processing, IEEE Transactions on, vol. 20, no. 7, pp. 2095–2110, 2012. [36] Chia-ying Lee and James Glass, “A nonparametric bayesian approach to acoustic model discovery,” in Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1. Association for Computational Linguistics, 2012, pp. 40–49. [37] Aren Jansen and Kenneth Church, “Towards unsupervised training of speaker independent acoustic models.,” in INTERSPEECH, 2011, pp. 1693–1692. [38] Aren Jansen, Kenneth Church, and Hynek Hermansky, “Towards spoken term discovery at scale with zero resources.,” in INTERSPEECH, 2010, pp. 1676–1679. [39] Alex S Park and James R Glass, “Unsupervised pattern discovery in speech,” Audio, Speech, and Language Processing, IEEE Transactions on, vol. 16, no. 1, pp. 186–197, 2008. [40] Veronique Stouten, Kris Demuynck, and Hugo Van Hamme, “Discovering phone patterns in spoken utterances by non-negative matrix factorization,” Signal Processing Letters, IEEE, vol. 15, pp. 131–134, 2008. [41] LeiWang, Eng Siong Chng, and Haizhou Li, “An iterative approach to model merging for speech pattern discovery,” 2011. [42] Niklas Vanhainen and Giampiero Salvi, “Word discovery with beta process factor analysis.,” in INTERSPEECH, 2012. [43] Joris Driesen and H Van Hamme, “Fast word acquisition in an nmf-based learning framework,” in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on. IEEE, 2012, pp. 5137–5140. [44] Yaodong Zhang and James R Glass, “Towards multi-speaker unsupervised speech pattern discovery,” in Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on. IEEE, 2010, pp. 4366–4369. [45] Man-Hung Siu, Herbert Gish, Arthur Chan, and William Belfield, “Improved topic classification and keyword discovery using an hmm-based speech recognizer trained without supervision.,” in INTERSPEECH, 2010, pp. 2838–2841. [46] Timothy J Hazen, Man-Hung Siu, Herbert Gish, Steve Lowe, and Arthur Chan, “Topic modeling for spoken documents using only phonetic information,” in Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on. IEEE, 2011, pp. 395–400. [47] Herbert Gish, Man-hung Siu, Arthur Chan, and William Belfield, “Unsupervised training of an hmm-based speech recognizer for topic classification.,” in INTERSPEECH, 2009, pp. 1935–1938. [48] Sourish Chaudhuri, Mark Harvilla, and Bhiksha Raj, “Unsupervised learning of acoustic unit descriptors for audio content representation and classification.,” in INTERSPEECH, 2011, pp. 2265–2268. [49] Marijn Huijbregts, Mitchell McLaren, and David van Leeuwen, “Unsupervised acoustic sub-word unit detection for query-by-example spoken term detection,” in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on. IEEE, 2011, pp. 4436–4439. [50] Chun-An Chan and Lin-Shan Lee, “Unsupervised hidden markov modeling of spoken queries for spoken term detection without speech recognition.,” in INTERSPEECH, 2011, pp. 2141–2144. [51] HaipengWang, Cheung-Chi Leung, Tan Lee, Bin Ma, and Haizhou Li, “An acoustic segment modeling approach to query-by-example spoken term detection,” in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on. IEEE, 2012, pp. 5157–5160. [52] Matthew Riley, Eric Heinen, and Joydeep Ghosh, “A text retrieval approach to content-based audio retrieval,” in Int. Symp. on Music Information Retrieval (ISMIR), 2008, pp. 295–300. [53] Yang Liu, Wan-Lei Zhao, Chong-Wah Ngo, Chang-Sheng Xu, and Han-Qing Lu, “Coherent bag-of audio words model for efficient large-scale video copy detection,”in Proceedings of the ACM International Conference on Image and Video Retrieval. ACM, 2010, pp. 89–96. [54] Cheng-Tao Chung, Chun-an Chan, and Lin-shan Lee, “Unsupervised discovery of linguistic structure including two-level acoustic patterns using three cascaded stages of iterative optimization,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 2013, pp. 8081–8085. [55] Tomas Mikolov, Martin Karafi’at, Lukas Burget, Jan Cernock`y, and Sanjeev Khudanpur, “Recurrent neural network based language model.,” in INTERSPEECH, 2010, pp. 1045–1048. [56] Tomas Mikolov, Stefan Kombrink, Lukas Burget, JH Cernocky, and Sanjeev Khudanpur, “Extensions of recurrent neural network language model,” in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on. IEEE, 2011, pp. 5528–5531. [57] Tomas Mikolov and Geoffrey Zweig, “Context dependent recurrent neural network language model.,” in SLT, 2012, pp. 234–239. [58] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig, “Linguistic regularities in continuous space word representations,” in Proceedings of NAACL-HLT, 2013, pp. 746–751. [59] Ronan Collobert and Jason Weston, “A unified architecture for natural language processing: Deep neural networks with multitask learning,” in Proceedings of the 25th international conference on Machine learning. ACM, 2008, pp. 160–167. [60] Joseph Turian, Lev Ratinov, and Yoshua Bengio, “Word representations: a simple and general method for semi-supervised learning,” in Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2010, pp. 384–394. [61] Ching feng Yeh, Hung yi Lee, and Lin-Shan Lee, “Speaking rate normalization with lattice-based context-dependent phoneme duration modeling for personalized speech recognizers on mobile devices,” In Bimbot et al. [65], pp. 1741–1745. [62] Tsung-HsienWen, Aaron Heidel, Hung yi Lee, Yu Tsao, and Lin-Shan Lee, “Recurrent neural network based language model personalization by social network crowdsourcing,” In Bimbot et al. [65], pp. 2703–2707. [63] Tsung-Hsien Wen, Hung-Yi Lee, Tai-Yuan Chen, and Lin-Shan Lee, “Personalized language modeling by crowd sourcing with social network data for voice access of cloud applications,” in Spoken Language Technology Workshop (SLT), 2012 IEEE. IEEE, 2012, pp. 188–193. [64] Jerome R Bellegarda, “Statistical language model adaptation: review and perspectives,” Speech communication, vol. 42, no. 1, pp. 93–108, 2004. [65] Fr’ed’eric Bimbot, Christophe Cerisara, C’ecile Fougeron, Guillaume Gravier, Lori Lamel, Franc﹐ois Pellegrino, and Pascal Perrier, Eds., INTERSPEECH 2013, 14th Annual Conference of the International Speech Communication Association, Lyon, France, August 25-29, 2013. ISCA, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56410 | - |
| dc.description.abstract | 本論文之主軸在探討語音數位內容之語意檢索(Semantic Retrieval of Spoken Content)。由於近年來網路日新月異,使得網路上包含語音資訊的多媒體數位內容(Multimedia Content) 如線上課程、電影、戲劇、會議錄音等日漸增加,因此,語音數位內容之檢索也隨之受到重視。但以前的語音數位內容檢索多半著重於口述語彙偵測(Spoken Term Detection),而本篇論文將把目標放在語意檢索(指找到語意相關的語音文件,但未必包含查詢詞(Query Terms)),實現的方法主要是借助查詢詞擴展(Query Expansion),並另外加入了一套自動習得之聲學組型(Automatically Discovered Acoustic Patterns) 用以解決以往語音數位內容語意檢索之困難。
首先,由於傳統的語音數位內容語意檢索是先將語音文件辨識為以文字構成的詞圖後,再於詞圖上進行查詢詞擴展,但有許多聲學上的資訊會在辨識之中流失,或是有辨識錯誤與辭典外辭彙也會使檢索系統的成效下降,因此本論文在文字的查詢詞擴展之外,再加入一套自動習得之聲學組型的查詢詞擴展,並結合兩套查詢詞擴展之結果回傳給使用者。 此外,使用聲學組型也可以直接達成非監督式(Unsupervised) 語音文件的語意檢索。傳統的語意檢索必須依賴文字才知語意,故需將語音文件辨識成詞圖,但是這樣需要已訓練得很好的聲學模型和語言模型,而這兩者的訓練需要有妥為標注(annotated) 並和數位內容適度匹配(matched) 的訓練語料。通常是非常昂貴的,因此我們將所有語音文件辨識為聲學組型的序列之後,在這些聲學組型的序列上進行查詢詞擴展,進而達到無需標注語料的非監督式語音數位內容之語意檢索。 另一方面,由於聲學組型在訓練時並不知道聲音和詞之間的關聯,所以會將所有同音詞的聲音歸類到同一個聲學組型中,這會使得檢索的成效下降。所以本論文進一步使用遞迴式類神經網路語言模型(Recurrent Neural Network Language Model)的詞表示法(Word Representation)將同一個聲學組型按照句法(Syntactics)和語意(Semantics)的不同進一步分群為不同的聲學組型,以便提升檢索系統成效。 最後,由於行動裝置日益重要,也使得行動裝置上的語音輸入漸受重視,因此本論文在Google 眼鏡上開發了兩個應用程序:雲端個人化語言翻譯系統和雲端個人化新聞查詢系統,幫助使用者在行動裝置上快速地取得想要的資訊。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:27:18Z (GMT). No. of bitstreams: 1 ntu-103-R01942062-1.pdf: 4663310 bytes, checksum: 7a3b1db5417a9f2f078873fe8c87882e (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 一、導論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 章節安排. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 二、背景知識. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 語音數位內容檢索. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 口述語彙偵測與語意檢索. . . . . . . . . . . . . . . . . . . . 5 2.1.3 詞圖與唯一最佳序列. . . . . . . . . . . . . . . . . . . . . . . 7 2.1.4 辭典外詞彙(Out of Vocabulary) . . . . . . . . . . . . . . . . . 9 2.1.5 檢索系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.6 片段式動態時間校準(Segmental DTW) . . . . . . . . . . . . . 11 2.1.7 資訊檢索評估機制. . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 相關回饋. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 外顯回饋. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 隱含回饋. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 虛擬回饋. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 查詢詞擴展與文件擴展. . . . . . . . . . . . . . . . . . . . . . 19 2.3 自動習得之聲學組型. . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 遞迴式類神經網路語言模型. . . . . . . . . . . . . . . . . . . . . . . 25 2.5 本章總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 三、以自動習得之聲學組型加強監督式語意檢索. . . . . . . . . . . . . . . . 30 3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 傳統監督式語音文件語意檢索. . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 第一次檢索結果. . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2 查詢詞擴展與第二次檢索. . . . . . . . . . . . . . . . . . . . 33 3.3 以聲學組型改善監督式語意檢索. . . . . . . . . . . . . . . . . . . . . 34 3.3.1 前處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2 第一次檢索結果. . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.3 查詢詞擴展. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 實驗設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 實驗結果及分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.6 本章總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 四、以自動習得之聲學組型實現非監督式語意檢索. . . . . . . . . . . . . . . 44 4.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 基於聲學組型之語意檢索. . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.1 系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 前處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.3 第一次檢索結果. . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.4 語意檢索. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 實驗設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4 N連聲學組型分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5 實驗結果及分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.5.1 聲學組型語意檢索能力分析. . . . . . . . . . . . . . . . . . . 57 4.6 本章總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 五、利用遞迴式類神經網路語言模型加強非監督式語音文件檢索. . . . . . . 59 5.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 基於遞迴式類神經網路語言模型之詞表示法. . . . . . . . . . . . . . 60 5.2.1 基於遞迴式類神經語言模型之詞表示法. . . . . . . . . . . . 60 5.3 以詞表示法改善非監督式語意檢索. . . . . . . . . . . . . . . . . . . 61 5.4 實驗基礎架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.5 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.6 本章總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 六、在Google Glass上實作個人化的語音翻譯與新聞檢索系統. . . . . . . . . 66 6.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.2 個人化的語言翻譯系統簡介. . . . . . . . . . . . . . . . . . . . . . . 68 6.3 個人化的語音文件檢索系統簡介. . . . . . . . . . . . . . . . . . . . . 70 6.4 系統展示. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4.1 個人化的語音翻譯系統展示. . . . . . . . . . . . . . . . . . . 71 6.4.2 個人化的語音文件檢索系統展示. . . . . . . . . . . . . . . . 71 6.5 本章總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 七、結論與展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.1 本論文主要的研究貢獻與未來展望. . . . . . . . . . . . . . . . . . . 74 7.1.1 使用聲學組型加強語音文件檢索. . . . . . . . . . . . . . . . 74 7.1.2 實作雲端語音辨識與應用程式於Google 眼鏡. . . . . . . . . 75 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 語意檢索 | zh_TW |
| dc.subject | 語音數位內容檢索 | zh_TW |
| dc.subject | 查詢詞擴展 | zh_TW |
| dc.subject | Spoken Content Retrieval | en |
| dc.subject | Semantic Retrieval | en |
| dc.subject | Query Expansion | en |
| dc.title | 使用查詢詞擴展與自動習得之聲學組型強化語音數位內容之語意檢索 | zh_TW |
| dc.title | Enhanced Semantic Retrieval of Spoken Content with Query Expansion and Automatically Discovered Acoustic Patterns | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳信宏,鄭秋豫,王小川,簡仁宗 | |
| dc.subject.keyword | 語音數位內容檢索,查詢詞擴展,語意檢索, | zh_TW |
| dc.subject.keyword | Spoken Content Retrieval,Query Expansion,Semantic Retrieval, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
