Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56403
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪弘(Hung Hung)
dc.contributor.authorZhi-Yu Jouen
dc.contributor.author周芷妤zh_TW
dc.date.accessioned2021-06-16T05:26:58Z-
dc.date.available2016-10-20
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation[1] Buysse, D. J., Reynolds, C. F., and Monk, T. H. (1989). The Pittsburgh sleep
quality index: A new instrument for psychiatric practice and research. Psychiatry
Research 28, 193-213.
[2] B˚uˇzkov’a, P., Lumely, T., and Rice., K. (2011). Permutation and parametric
bootstrap tests for gene-gene and gene-environment interactions. Annals of
Human Genetics 75, 36-45.
[3] Henderson, H. V. and Searle, S. R. (1979). Vec and vech operators for matrices,
with some uses in Jacobians and multivariate statistics. Canadian Journal of
Statistics, 7, 65-81.
[4] Hung, H. and Wang, C. C. (2012). Matrix variate logistic regression model with
application to EEG data. Biostatistics 14, 189-202.
[5] Lai, Y. C., Huang, M. C., Chen, H. C., Lu, M. K., Chiu, Y. H., Shen, W. W.,
Lu, R. B., and Kuo, P.H. (2014). Familiality and clinical outcomes of sleep disturbances
in major depressive and bipolar disorders. Journal of Psychosomatic
Research 76, 61-67.
[6] Lin, X. (1997). Variance component testing in generalised linear models with
random effects. Biometrika 84, 309-326.
[7] Lin, X., Lee, S., Christiani, D. C., and Lin, X. (2013). Test for interactions
between a genetic marker set and environment in generalized linear models.
Biostatistics 14, 667-681.
[8] Shapiro, A. (1986). Asymptotic theory of overparameterized structural models.
Journal of American Statistical Association, 81, 142-149.
[9] Zhou, H., Li, L., and Zhu, H. (2013). Tensor regression with applications in
neuroimaging data analysis. Journal of the American Statistical Association
108, 540-552.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56403-
dc.description.abstract偵測基因與環境之交互作用為生物醫學研究中重要的議題之一。雖然廣義線性模式已被廣泛地使用於解決這類型的問題,但將會遭遇高維度的困難。在此研究中,我們利用矩陣結構並應用張量迴歸模式的技術來克服偵測基因與環境之交互作用所遇到的高維度困難。張量迴歸的優點之一為,在模式建構上使用較精簡的參數個數。因此,我們期望利用張量迴歸能更有效地且更有力地來偵測基因與環境之交互作用。利用張量迴歸偵測基因與環境之交互作用的另一個優點為可同時估計effect sizes。我們藉由模擬分析以及兩個資料集來評估本研究提出之方法的表現。zh_TW
dc.description.abstractTesting the significance of gene×environment (G×E) interactions is an important issue in biomedical research. Although the generalized linear model has been widely applied in this problem, it will suffer the difficulty of high-dimensionality. In this study, we utilize the
matrix structure and apply the technique of tensor regression model to overcome the difficulty of high-dimensionality in detecting G×E. One advantage of tensor regression is the parsimony of parameters used. As a result, tensor regression is expected to be more efficient and powerful to detecting G×E. Another advantage of testing G×E by tensor regression is that the effect sizes can be estimated at the same time. We evaluate the performances of our methods through numerical studies and two data
sets (the PSQI data and the EEG data).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:26:58Z (GMT). No. of bitstreams: 1
ntu-103-R01849031-1.pdf: 4534037 bytes, checksum: faf2b20af2a1f5994a7f0d7892e83999 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
1 Introduction 1
2 Statistical Inference Procedure 4
2.1 Model specification and estimation . . . . . . . . . . . . . . . . . . . 4
2.2 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Selection of r and λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Detection of G×E 10
4 Simulation Studies 13
4.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Simulation results of estimating G×E effects . . . . . . . . . . . . . . 14
4.3 Simulation results of detecting G×E . . . . . . . . . . . . . . . . . . 16
4.4 Data simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Data Analysis 20
5.1 PSQI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 EEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 Conclusions 25
Reference 26
Appendices 28
dc.language.isoen
dc.subject過度參數化zh_TW
dc.subject基因×環境交互作用zh_TW
dc.subject張量迴歸zh_TW
dc.subject矩陣變項zh_TW
dc.subject假說檢定zh_TW
dc.subjectOverparameterizationen
dc.subjectMatrix covariateen
dc.subjectHypothesis testingen
dc.subjectGene×environment interactionsen
dc.subjectTensor regressionen
dc.title利用張量迴歸偵測基因與環境之交互作用zh_TW
dc.titleDetection of Gene×Environment Interactions via
Tensor Regression
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭朱杏(Chuhsing Kate Hsiao),郭柏秀(Po-Hsiu Kuo),陳素雲(Su-Yun Huang),程毅豪(Yi-Hau Chen)
dc.subject.keyword基因×環境交互作用,張量迴歸,矩陣變項,假說檢定,過度參數化,zh_TW
dc.subject.keywordGene×environment interactions,Tensor regression,Matrix covariate,Hypothesis testing,Overparameterization,en
dc.relation.page30
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved