Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56401
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林水龍(Shuei-Liong Lin)
dc.contributor.authorChian-Huei Yangen
dc.contributor.author楊千慧zh_TW
dc.date.accessioned2021-06-16T05:26:52Z-
dc.date.available2017-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation1. Schrauzer GN. Lithium: occurrence, dietary intakes, nutritional essentiality. Journal of the American College of Nutrition. 2002;21:14-21.
2. Zarse K, Terao T, Tian J, Iwata N, Ishii N, Ristow M. Low-dose lithium uptake promotes longevity in humans and metazoans. European journal of nutrition. 2011;50:387-9.
3. Gonzalez R, Bernstein I, Suppes T. An investigation of water lithium concentrations and rates of violent acts in 11 Texas counties: can an association be easily shown? The Journal of clinical psychiatry. 2008;69:325-6.
4. Ohgami H, Terao T, Shiotsuki I, Ishii N, Iwata N. Lithium levels in drinking water and risk of suicide. The British journal of psychiatry : the journal of mental science. 2009;194:464-5; discussion 46.
5. Manji HK, Moore GJ, Chen G. Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biological psychiatry. 1999;46:929-40.
6. Chuang DM. Neuroprotective and neurotrophic actions of the mood stabilizer lithium: can it be used to treat neurodegenerative diseases? Critical reviews in neurobiology. 2004;16:83-90.
7. Rowe MK, Chuang DM. Lithium neuroprotection: molecular mechanisms and clinical implications. Expert reviews in molecular medicine. 2004;6:1-18.
8. Wada A, Yokoo H, Yanagita T, Kobayashi H. Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases. Journal of pharmacological sciences. 2005;99:307-21.
9. Young W. Review of lithium effects on brain and blood. Cell transplantation. 2009;18:951-75.
10. Quiroz JA, Machado-Vieira R, Zarate CA, Jr., Manji HK. Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology. 2010;62:50-60.
11. Benedetti F, Bollettini I, Barberi I, Radaelli D, Poletti S, Locatelli C, et al. Lithium and GSK3-beta promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2013;38:313-27.
12. Rylatt DB, Aitken A, Bilham T, Condon GD, Embi N, Cohen P. Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase. European journal of biochemistry / FEBS. 1980;107:529-37.
13. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. Journal of Cell Science. 2003;116:1175-86.
14. Medina M, Wandosell F. Deconstructing GSK-3: The Fine Regulation of Its Activity. Int J Alzheimers Dis. 2011;2011:479249.
15. Sutherland C. What Are the bona fide GSK3 Substrates? International Journal of Alzheimer's Disease. 2011;2011.
16. Ruel L, Bourouis M, Heitzler P, Pantesco V, Simpson P. Drosophila shaggy kinase and rat glycogen synthase kinase-3 have conserved activities and act downstream of Notch. Nature. 1993;362:557-60.
17. Itoh K, Tang TL, Neel BG, Sokol SY. Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase. Development (Cambridge, England). 1995;121:3979-88.
18. Ali A, Hoeflich KP, Woodgett JR. Glycogen synthase kinase-3: properties, functions, and regulation. Chemical reviews. 2001;101:2527-40.
19. Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. The EMBO journal. 1990;9:2431-8.
20. Kaidanovich-Beilin O, Woodgett JR. GSK-3: Functional Insights from Cell Biology and Animal Models. Frontiers in molecular neuroscience. 2011;4:40.
21. Soutar MPM, Kim W-Y, Williamson R, Peggie M, Hastie CJ, McLauchlan H, et al. Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brain. Journal of Neurochemistry. 2010;115:974-83.
22. Ma T. GSK3 in Alzheimer's disease: mind the isoforms. Journal of Alzheimer's disease : JAD. 2014;39:707-10.
23. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000;406:86-90.
24. MacAulay K, Doble BW, Patel S, Hansotia T, Sinclair EM, Drucker DJ, et al. Glycogen synthase kinase 3alpha-specific regulation of murine hepatic glycogen metabolism. Cell metabolism. 2007;6:329-37.
25. Fiol CJ, Wang A, Roeske RW, Roach PJ. Ordered multisite protein phosphorylation. Analysis of glycogen synthase kinase 3 action using model peptide substrates. The Journal of biological chemistry. 1990;265:6061-5.
26. Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nature reviews Genetics. 2004;5:691-701.
27. Frame S, Cohen P, Biondi RM. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell. 2001;7:1321-7.
28. Cardona-Gomez P, Perez M, Avila J, Garcia-Segura LM, Wandosell F. Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus. Molecular and cellular neurosciences. 2004;25:363-73.
29. Lesort M, Jope RS, Johnson GV. Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase. J Neurochem. 1999;72:576-84.
30. Hartigan JA, Xiong WC, Johnson GV. Glycogen synthase kinase 3beta is tyrosine phosphorylated by PYK2. Biochemical and biophysical research communications. 2001;284:485-9.
31. Takahashi-Yanaga F, Shiraishi F, Hirata M, Miwa Y, Morimoto S, Sasaguri T. Glycogen synthase kinase-3beta is tyrosine-phosphorylated by MEK1 in human skin fibroblasts. Biochemical and biophysical research communications. 2004;316:411-5.
32. Cole A, Frame S, Cohen P. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. The Biochemical journal. 2004;377:249-55.
33. Lochhead PA, Kinstrie R, Sibbet G, Rawjee T, Morrice N, Cleghon V. A Chaperone-Dependent GSK3β Transitional Intermediate Mediates Activation-Loop Autophosphorylation. Molecular Cell. 2006;24:627-33.
34. Li L, Yuan H, Weaver CD, Mao J, Farr GH, 3rd, Sussman DJ, et al. Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. The EMBO journal. 1999;18:4233-40.
35. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell. 2010;143:1136-48.
36. Kishore BK, Ecelbarger CM. Lithium: a versatile tool for understanding renal physiology. American journal of physiology Renal physiology. 2013;304:F1139-49.
37. Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochemical and biophysical research communications. 2001;280:720-5.
38. Jope RS. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends in Pharmacological Sciences. 2003;24:441-3.
39. Nolen WA, Weisler RH. The association of the effect of lithium in the maintenance treatment of bipolar disorder with lithium plasma levels: a post hoc analysis of a double-blind study comparing switching to lithium or placebo in patients who responded to quetiapine (Trial 144). Bipolar disorders. 2013;15:100-9.
40. Erden A, Karagoz H, Basak M, Karahan S, Cetinkaya A, Avci D, et al. Lithium intoxication and nephrogenic diabetes insipidus: a case report and review of literature. International journal of general medicine. 2013;6:535-9.
41. Timmer RT, Sands JM. Lithium intoxication. Journal of the American Society of Nephrology : JASN. 1999;10:666-74.
42. Markowitz GS, Radhakrishnan J, Kambham N, Valeri AM, Hines WH, D'Agati VD. Lithium nephrotoxicity: a progressive combined glomerular and tubulointerstitial nephropathy. Journal of the American Society of Nephrology : JASN. 2000;11:1439-48.
43. Fenves AZ, Emmett M, White MG. Lithium intoxication associated with acute renal failure. Southern medical journal. 1984;77:1472-4.
44. Stone KA. Lithium-induced nephrogenic diabetes insipidus. The Journal of the American Board of Family Practice / American Board of Family Practice. 1999;12:43-7.
45. Sands JM, Bichet DG. Nephrogenic diabetes insipidus. Annals of internal medicine. 2006;144:186-94.
46. Matsumura Y, Uchida S, Rai T, Sasaki S, Marumo F. Transcriptional regulation of aquaporin-2 water channel gene by cAMP. Journal of the American Society of Nephrology : JASN. 1997;8:861-7.
47. Umenishi F, Narikiyo T, Vandewalle A, Schrier RW. cAMP regulates vasopressin-induced AQP2 expression via protein kinase A-independent pathway. Biochimica et biophysica acta. 2006;1758:1100-5.
48. Cogan E, Svoboda M, Abramow M. Mechanisms of lithium-vasopressin interaction in rabbit cortical collecting tubule. The American journal of physiology. 1987;252:F1080-7.
49. Christensen S, Kusano E, Yusufi AN, Murayama N, Dousa TP. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats. The Journal of clinical investigation. 1985;75:1869-79.
50. Rao R. Glycogen synthase kinase-3 regulation of urinary concentrating ability. Current Opinion in Nephrology and Hypertension. 2012;21:541-6 10.1097/MNH.0b013e32835571d4.
51. Rao R, Patel S, Hao C, Woodgett J, Harris R. GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity. Journal of the American Society of Nephrology : JASN. 2010;21:428-37.
52. Hebert RL, Jacobson HR, Breyer MD. PGE2 inhibits AVP-induced water flow in cortical collecting ducts by protein kinase C activation. The American journal of physiology. 1990;259:F318-25.
53. Olesen ETB, Fenton RA. Is There a Role for PGE2 in Urinary Concentration? Journal of the American Society of Nephrology. 2013;24:169-78.
54. Hao CM, Breyer MD. Physiological regulation of prostaglandins in the kidney. Annual review of physiology. 2008;70:357-77.
55. Rao R, Hao CM, Breyer MD. Hypertonic stress activates glycogen synthase kinase 3beta-mediated apoptosis of renal medullary interstitial cells, suppressing an NFkappaB-driven cyclooxygenase-2-dependent survival pathway. The Journal of biological chemistry. 2004;279:3949-55.
56. Rao R, Zhang MZ, Zhao M, Cai H, Harris RC, Breyer MD, et al. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. American journal of physiology Renal physiology. 2005;288:F642-9.
57. Presne C, Fakhouri F, Noel LH, Stengel B, Even C, Kreis H, et al. Lithium-induced nephropathy: Rate of progression and prognostic factors. Kidney Int. 2003;64:585-92.
58. Tredget J, Kirov A, Kirov G. Effects of chronic lithium treatment on renal function. Journal of affective disorders. 2010;126:436-40.
59. Grunfeld JP, Rossier BC. Lithium nephrotoxicity revisited. Nature reviews Nephrology. 2009;5:270-6.
60. Walker RJ, Leader JP, Bedford JJ, Gobe G, Davis G, Vos FE, et al. Chronic interstitial fibrosis in the rat kidney induced by long-term (6-mo) exposure to lithium. American journal of physiology Renal physiology. 2013;304:F300-7.
61. Gomez-Sintes R, Lucas JJ. NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy. The Journal of clinical investigation. 2010;120:2432-45.
62. Close H, Reilly J, Mason JM, Kripalani M, Wilson D, Main J, et al. Renal failure in lithium-treated bipolar disorder: a retrospective cohort study. PloS one. 2014;9:e90169.
63. Kjaersgaard G, Madsen K, Marcussen N, Jensen BL. Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase-2. Physiological reports. 2014;2:e00202.
64. Kwon TH, Laursen UH, Marples D, Maunsbach AB, Knepper MA, Frokiaer J, et al. Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI. American journal of physiology Renal physiology. 2000;279:F552-64.
65. Yamaki M, Kusano E, Tetsuka T, Takeda S, Homma S, Murayama N, et al. Cellular mechanism of lithium-induced nephrogenic diabetes insipidus in rats. The American journal of physiology. 1991;261:F505-11.
66. Min G, Christensen S, Marcussen N, Osterby R. Glomerular structure in lithium-induced chronic renal failure in rats. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2000;108:652-62.
67. Gao Y, Romero-Aleshire MJ, Cai Q, Price TJ, Brooks HL. Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells. American journal of physiology Renal physiology. 2013;305:F1201-8.
68. de Groot T, Alsady M, Jaklofsky M, Otte-Holler I, Baumgarten R, Giles RH, et al. Lithium causes G2 arrest of renal principal cells. Journal of the American Society of Nephrology : JASN. 2014;25:501-10.
69. Ottosen PD, Sigh B, Kristensen J, Olsen S, Christensen S. Lithium induced interstitial nephropathy associated with chronic renal failure. Reversibility and correlation between functional and structural changes. Acta pathologica, microbiologica, et immunologica Scandinavica Section A, Pathology. 1984;92:447-54.
70. Baptista T, Teneud L, Contreras Q, Alastre T, Burguera JL, de Burguera M, et al. Lithium and body weight gain. Pharmacopsychiatry. 1995;28:35-44.
71. Bersudsky Y, Shaldubina A, Belmaker RH. Lithium's effect in forced-swim test is blood level dependent but not dependent on weight loss. Behavioural pharmacology. 2007;18:77-80.
72. Abodo J, Seux V, Koffi-Dago P, Dalco O, Renaud-Levy O, Tassy S, et al. [Nephrogenic diabetes insipidus during lithium acute intoxication]. Annales d'endocrinologie. 2007;68:467-9.
73. O'Connor EF, Naylor SK, Cox RH, Lawler JE. Lithium chloride stabilizes systolic blood pressure and increases adrenal catecholamines in the spontaneously hypertensive rat. Physiology & Behavior. 1988;44:69-74.
74. Seibert FS, Riesselmann B, Westhoff TH. A Sweet Cause of Polyuria. American Journal of Kidney Diseases.57:355-6.
75. Merwick A, Cooke J, Neligan A, McNamara B, Sweeney BJ. Acute neuropathy in setting of diarrhoeal illness and hyponatraemia due to lithium toxicity. Clinical neurology and neurosurgery. 2011;113:923-4.
76. Waymouth C. Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro. 1970;6:109-27.
77. Kjaersgaard G, Madsen K, Marcussen N, Jensen BL. Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase-2. Physiological reports. 2014;2:n/a-n/a.
78. Wood AJ, Goodwin GM, De Souza R, Green AR. The pharmacokinetic profile of lithium in rat and mouse; an important factor in psychopharmacological investigation of the drug. Neuropharmacology. 1986;25:1285-8.
79. Focosi D, Azzara A, Kast RE, Carulli G, Petrini M. Lithium and hematology: established and proposed uses. Journal of Leukocyte Biology. 2009;85:20-8.
80. Takahashi N, Boysen G, Li F, Li Y, Swenberg JA. Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate. Kidney Int. 2007;71:266-71.
81. Dunn SR, Qi Z, Bottinger EP, Breyer MD, Sharma K. Utility of endogenous creatinine clearance as a measure of renal function in mice. Kidney Int. 2004;65:1959-67.
82. Haraldsson B, Nystrom J, Deen WM. Properties of the Glomerular Barrier and Mechanisms of Proteinuria2008.
83. Ma LJ, Fogo AB. Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int. 2003;64:350-5.
84. Ishola DA, van der Giezen DM, Hahnel B, Goldschmeding R, Kriz W, Koomans HA, et al. In mice, proteinuria and renal inflammatory responses to albumin overload are strain-dependent. Nephrology Dialysis Transplantation. 2006;21:591-7.
85. Shimamura T, Morrison AB. A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats. The American journal of pathology. 1975;79:95-106.
86. Eddy AA. Proteinuria and interstitial injury. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2004;19:277-81.
87. Wang Q, Hummler E, Nussberger J, Clement S, Gabbiani G, Brunner HR, et al. Blood pressure, cardiac, and renal responses to salt and deoxycorticosterone acetate in mice: role of Renin genes. Journal of the American Society of Nephrology : JASN. 2002;13:1509-16.
88. Ray PE, Bruggeman LA, Horikoshi S, Aguilera G, Klotman PE. Angiotensin II stimulates human fetal mesangial cell proliferation and fibronectin biosynthesis by binding to AT1 receptors. Kidney Int. 1994;45:177-84.
89. Herman-Edelstein M, Thomas MC, Thallas-Bonke V, Saleem M, Cooper ME, Kantharidis P. Dedifferentiation of Immortalized Human Podocytes in Response to Transforming Growth Factor-β: A Model for Diabetic Podocytopathy. Diabetes. 2011;60:1779-88.
90. Zhu L, Qi XY, Aoudjit L, Mouawad F, Baldwin C, Nattel S, et al. Nuclear factor of activated T cells mediates RhoA-induced fibronectin upregulation in glomerular podocytes. American journal of physiology Renal physiology. 2013;304:F849-62.
91. Leelahavanichkul A, Yan Q, Hu X, Eisner C, Huang Y, Chen R, et al. Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model. Kidney Int. 2010;78:1136-53.
92. Ideura H, Hiromura K, Hiramatsu N, Shigehara T, Takeuchi S, Tomioka M, et al. Angiotensin II provokes podocyte injury in murine model of HIV-associated nephropathy. American journal of physiology Renal physiology. 2007;293:F1214-21.
93. Kirchhoff F, Krebs C, Abdulhag UN, Meyer-Schwesinger C, Maas R, Helmchen U, et al. Rapid development of severe end-organ damage in C57BL/6 mice by combining DOCA salt and angiotensin II. Kidney Int. 2008;73:643-50.
94. Lin SL, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. The American journal of pathology. 2008;173:1617-27.
95. Padfield PL, Morton JJ, Lindop G, Timbury GC. Lithium induced nephrogenic diabetes insipidus: changes in plasma vasopressin and angiotensin II. Clinical nephrology. 1975;3:220-4.
96. Transbol I, Christiansen C, Baastrup PC, Nielsen MD, Giese J. Endocrine effects of lithium. III. Hypermagnesaemia and activation of the renin-aldosterone system. Acta endocrinologica. 1978;88:619-24.
97. Baer L, Glassman AH, Kassir S. Negative sodium balance in lithium carbonate toxicity. Evidence of mineralocorticoid blockade. Archives of general psychiatry. 1973;29:823-7.
98. Nielsen J, Kwon TH, Frokiaer J, Knepper MA, Nielsen S. Lithium-induced NDI in rats is associated with loss of alpha-ENaC regulation by aldosterone in CCD. American journal of physiology Renal physiology. 2006;290:F1222-33.
99. Lehmann K, Ritz E. Angiotensin-converting enzyme inhibitors may cause renal dysfunction in patients on long-term lithium treatment. American journal of kidney diseases : the official journal of the National Kidney Foundation. 1995;25:82-7.
100. Handler J. Lithium and antihypertensive medication: a potentially dangerous interaction. Journal of clinical hypertension (Greenwich, Conn). 2009;11:738-42.
101. Mezzano SA, Ruiz-Ortega M, Egido J. Angiotensin II and Renal Fibrosis. Hypertension. 2001;38:635-8.
102. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nature medicine. 2010;16:535-43, 1p following 143.
103. Howard C, Tao S, Yang H-C, Fogo AB, Woodgett JR, Harris RC, et al. Specific deletion of glycogen synthase kinase-3[beta] in the renal proximal tubule protects against acute nephrotoxic injury in mice. Kidney Int. 2012;82:1000-9.
104. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, et al. Intrinsic Epithelial Cells Repair the Kidney after Injury. Cell Stem Cell. 2008;2:284-91.
105. He W, Xie Q, Wang Y, Chen J, Zhao M, Davis LS, et al. Generation of a Tenascin-C-CreER2 Knockin Mouse Line for Conditional DNA Recombination in Renal Medullary Interstitial Cells. PloS one. 2013;8:e79839.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56401-
dc.description.abstract鋰鹽已被用於躁鬱症治療多年,但其作用機制是到近幾年才逐步釐清。已有多篇研究證實,鋰鹽對於糖原合成酶激酶3(glycogen synthase kinase-3,GSK3)的抑制效果,是促成神經細胞穩定的重要因素。而鋰鹽多需長期服用,且治療濃度與中毒濃度接近,因此負責鋰鹽代謝的腎臟常是最直接受到影響的器官。除了鋰鹽中毒造成急性腎衰竭外,長期治療的病人有很高比例會引發腎性尿崩症(Nephrogenic diabetes insipidus,NDI),並有部分病患演變成慢性腎病變(chronic kidney disease,CKD)。目前的研究多著重於NDI成因的探討,已知的主要途徑是因鋰鹽抑制血管加壓素訊息(vasopressin signaling)傳遞,使集尿管上負責進行水分再吸收的第二型水通道蛋白(aquaporin 2,AQP2)表現量降低,並阻擋其運輸至主細胞(principal cell)的頂膜上執行作用,導致水分無法再吸收,病患尿液濃縮能力失調。至於長期服用鋰鹽所導致的CKD,目前已有多篇臨床追蹤研究證實鋰鹽的使用會緩慢降低病人的肌酸酐廓清率(creatinine clearance,CCr)和腎絲球過濾率(glomerular filtration rate,GFR),而逐漸走向CKD。並由病人的組織切片觀察到慢性腎小管間質腎病(chronic tubulointerstitial nephropathy,CTIN)和局部腎絲球硬化(focal segmental glomerulosclerosis,FSGS)的病徵,但相關機制的探究至今仍然缺乏。
近期的研究,終於在實驗中建立大鼠長期(6個月)服用鋰鹽產生慢性間質纖維化的模型。但隨著基因轉殖/基因剔除小鼠使用的廣泛,若要作疾病機轉的探究,勢必要用到此工具。因此,我們選用C57BL/6(簡稱B6)小鼠作為研究對象,餵食小鼠鋰鹽飼料半年,並在過程中監控其腎功能,檢測有無蛋白尿和腎臟纖維化的發生,目的是要建立鋰鹽引發慢性腎臟病的小鼠模式。
我們給予小鼠含有鋰鹽的飼料,於服用飼料後第2、4、8、12、24週分批將小鼠放至代謝籠,留24小時尿液後進行犧牲,抽血並作腎臟組織的採集。在小鼠血中的鋰濃度皆維持在臨床治療濃度範圍的前提下,我們觀察到鋰鹽組小鼠飲水量和排尿量顯著較控制組高,且尿液滲透壓的數值顯著較低,但卻未低於血漿滲透壓因而認定為溶質利尿。自由水廓清率未看出水分過度排出,腎臟AQP2的基因表現也與控制組無異。於是我們另外進行了限水試驗,確實有看到鋰鹽小鼠水分再吸收反應較差的情形。而從滲透壓廓清率、鈉、氯排出量較控制組高的結果,我們無法排除水利尿(water diuresis)和溶質利尿(solute diuresis)同時存在的可能。服用鋰鹽的過程中,小鼠的腎功能與控制組無異,由尿中白蛋白的檢測也未能看出蛋白尿的情形。至於是否有間質纖維化的產生?我們未能看到纖維化相關基因的表現增加,而從組織切片染色分析結果,同樣沒有看到腎臟纖維化的跡象。總結來說,本次實驗雖有看到B6小鼠長期服用鋰鹽產生尿液濃縮的失調,但卻未能區辨其成因為水利尿還是溶質利尿。由腎功能、白蛋白檢測和組織切片染色分析,確認B6小鼠在服用鋰鹽半年後依然無法建立慢性腎臟病的模式。是故後人若要進行鋰鹽相關研究,可選用B6小鼠作尿崩症成因的探討,但若是要研究鋰鹽慢性腎臟病,B6小鼠就不會是個好選擇。
zh_TW
dc.description.abstractLithium has been used therapeutically for more than 100 years and remains a common drug for bipolar disorders. However, the mechanism of this agent was unclear until recently studies explored. More and more studies proved that lithium’s neuroprotective ability comes from the inhibition of glycogen synthase kinase 3 (GSK3), a ubiquitously expressed serine/threonine kinase. Although the effect of lithium therapy is remarkable, long-term use brings renal toxicity frequently. Lithium nephrotoxicity can be divided into three main categories: acute intoxication, nephrogenic diabetes insipidus (NDI), and chronic kidney disease (CKD).
In addition to the overdose of lithium contributes to acute renal failure, the most common side effect is NDI. Defective in urinary concentrating ability make patients present with polyuria and polydipsia. Numerous studies revealed that this defect is due to the downregulation of aquaporin 2 (AQP2), a water channel regulated by vasopressin signaling, and decrease in AQP2 trafficking to the apical membrane of the principal cells in the collecting ducts.
Prolonged lithium treated patients display CKD in a high proportion. Chronic tubulointerstitial nephropathy (CTIN) and focal segmental glomerulosclerosis (FSGS) are dominant CKD form in these biopsy findings. Nevertheless, the researches of lithium-induced CKD are still limited.
Recently, a lithium-induced chronic interstitial fibrosis model has been established in rat kidney. It will be a useful tool to understand of chronic interstitial fibrosis and find out the intervention strategies to prevent injury. However, lithium is a systemic drug that is difficult to study the detail mechanism or effect on specific cells. To reveal the molecular mechanism of diseases, transgenic mice are the irreplaceable instrument. Whether the lithium-induced chronic interstitial fibrosis also occurs on mice must be verify before the transgenic mice use.
Therefore, we built up a mice model to study the disease progression of lithium-induced nephropathy. We chose C57BL/6, the most widely used stain for transgenic mice production, as our study subject. These mice fed on lithium diet for 6 months, and monitored plasma lithium level in therapeutic range. The lithium-treated mice remained polyuria and polydipsia over the duration of the study, except 6 month. Although the urine osmolality was significantly lower than control group, it was still concentrating urine (urine osmolality > plasma osmolality) that defined as solute diuresis. Higher osmolality clearance and sodium, chloride excretion may also be the solute diuresis evidences. Free water clearance and gene expression both could not prove the appearance of NDI. We verified with water deprivation test that lithium decreased urine concentrating ability.
These mice remained normal renal function that compared to control group. There was no proteinuria occurred in this study. Renal interstitial fibrosis examined with gene expression and histology staining, but there was no different between the two groups. In conclusion, C56BL/6 mice can be used for lithium-induced NDI study, but not a good choice for chronic interstitial fibrosis investigation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:26:52Z (GMT). No. of bitstreams: 1
ntu-103-R01441001-1.pdf: 3494928 bytes, checksum: 4c7845f6d895ca31a44e185d82507ebf (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xi
一、 前言 1
1. 鋰(lithium) 1
2. 糖原合成酶激酶(glycogen synthase kinase 3,GSK3) 1
2.1 GSK3結構與多型性 2
2.2 GSK3作用特性 3
2.3 GSK3之活性調控 4
2.4 Lithium對GSK3之調控機制 5
3. 鋰鹽腎毒性(lithium nephrotoxicity) 6
3.1 急性鋰鹽中毒(acute lithium intoxication) 6
3.2 腎性尿崩症(nephrogenic diabetes insipidus,NDI) 7
3.3 慢性腎病變(chronic kidney disease,CKD) 8
4. 實驗目的 9
二、 材料與方法 11
1. 實驗動物 11
2. 實驗設計 11
2.1 實驗動物飼料 11
2.2 長期服用鋰鹽小鼠模式 11
2.3 服用鋰鹽小鼠之限水實驗 12
3. 動物犧牲與檢體採集 12
3.1 藥品與溶劑 12
3.2 溶液 14
3.3 步驟 15
4. 血液及尿液檢測 16
5. 血壓量測 16
6. 尿液白蛋白測量 17
6.1 試劑組 17
6.2 藥品與溶劑 17
6.3 溶液 18
6.4 步驟 20
7. 苦味酸天狼星紅染色(Picrosirius red stain) 20
8. 反轉錄(reverse transcription)及即時聚合酶連鎖反應(real-time polymerase chain reaction,real-time PCR) 21
8.1 溶劑與試劑組 21
8.2 步驟 21
9. 統計分析 22
三、 實驗結果 23
1. 建立長期服用鋰鹽之小鼠模式 23
2. 長期服用鋰鹽對生理數值的影響 23
3. 長期服用鋰鹽對腎臟水分再吸收調控的影響 24
3.1 喝水量與排尿量情況 24
3.2 體內滲透壓調節 25
3.3 體內電解質平衡 25
3.4 水分再吸收情況 27
3.5 與尿液流量相關之基因表現 27
3.6 鋰鹽小鼠限水實驗 28
4. 對腎功能的影響 28
5. 對尿蛋白的影響 29
6. 纖維化之相關基因表現 29
7. 組織切片染色分析 30
四、 討論 31
1. 長期服用鋰鹽之小鼠模式建立 31
2. 鋰鹽小鼠水分及滲透壓調節情況 33
3. 鋰鹽小鼠有無慢性腎臟病產生之分析 36
3.1 腎功能變化 36
3.2 蛋白尿發生之有無 37
3.3 腎臟纖維化及腎絲球硬化發生之有無 38
4. 結論與未來展望 40
五、 圖表 43
六、 參考文獻 61
dc.language.isozh-TW
dc.subject間質纖維化zh_TW
dc.subject尿崩症zh_TW
dc.subjectC57BL/6zh_TW
dc.subject鋰鹽zh_TW
dc.subject長期鋰鹽治療zh_TW
dc.subject慢性腎臟病zh_TW
dc.subject蛋白尿zh_TW
dc.subjectchronic kidney diseaseen
dc.subjectlithiumen
dc.subjectC57BL/6en
dc.subjectnephrogenic diabetes insipidusen
dc.subjectinterstitial fibrosisen
dc.subjectproteinuriaen
dc.subjectchronic kidney diseaseen
dc.subjectlithiumen
dc.subjectC57BL/6en
dc.subjectnephrogenic diabetes insipidusen
dc.subjectinterstitial fibrosisen
dc.subjectproteinuriaen
dc.titleC57BL/6小鼠長期服用鋰鹽之腎臟病程觀測zh_TW
dc.titleThe progression of nephropathy in C57BL/6 mice by chronic exposure to lithiumen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳明修,姜文智
dc.subject.keyword鋰鹽,長期鋰鹽治療,C57BL/6,尿崩症,間質纖維化,蛋白尿,慢性腎臟病,zh_TW
dc.subject.keywordlithium,C57BL/6,nephrogenic diabetes insipidus,interstitial fibrosis,proteinuria,chronic kidney disease,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved