請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56397完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李芳仁(Fang-Jen Lee) | |
| dc.contributor.author | Chia-Lun Liu | en |
| dc.contributor.author | 劉嘉倫 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:26:41Z | - |
| dc.date.available | 2019-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-14 | |
| dc.identifier.citation | Behnia, R., B. Panic, J. R. Whyte and S. Munro (2004). 'Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p.' Nat Cell Biol 6(5): 405-413.
Bensen, E. S., B. G. Yeung and G. S. Payne (2001). 'Ric1p and the Ypt6p GTPase function in a common pathway required for localization of trans-Golgi network membrane proteins.' Mol Biol Cell 12(1): 13-26. Bertolotti, A., X. Wang, I. Novoa, R. Jungreis, K. Schlessinger, J. H. Cho, A. B. West and D. Ron (2001). 'Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice.' J Clin Invest 107(5): 585-593. Calfon, M., H. Zeng, F. Urano, J. H. Till, S. R. Hubbard, H. P. Harding, S. G. Clark and D. Ron (2002). 'IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA.' Nature 415(6867): 92-96. Casagrande, R., P. Stern, M. Diehn, C. Shamu, M. Osario, M. Zuniga, P. O. Brown and H. Ploegh (2000). 'Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway.' Mol Cell 5(4): 729-735. Chardin, P., S. Paris, B. Antonny, S. Robineau, S. Beraud-Dufour, C. L. Jackson and M. Chabre (1996). 'A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains.' Nature 384(6608): 481-484. Chen, K. Y., P. C. Tsai, J. W. Hsu, H. C. Hsu, C. Y. Fang, L. C. Chang, Y. T. Tsai, C. J. Yu and F. J. Lee (2010). 'Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p.' J Cell Sci 123(Pt 20): 3478-3489. Chen, K. Y., P. C. Tsai, Y. W. Liu and F. J. Lee (2012). 'Competition between the golgin Imh1p and the GAP Gcs1p stabilizes activated Arl1p at the late-Golgi.' J Cell Sci 125(Pt 19): 4586-4596. Chen, Y., D. E. Feldman, C. Deng, J. A. Brown, A. F. De Giacomo, A. F. Gaw, G. Shi, Q. T. Le, J. M. Brown and A. C. Koong (2005). 'Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae.' Mol Cancer Res 3(12): 669-677. Cherfils, J., J. Menetrey, M. Mathieu, G. Le Bras, S. Robineau, S. Beraud-Dufour, B. Antonny and P. Chardin (1998). 'Structure of the Sec7 domain of the Arf exchange factor ARNO.' Nature 392(6671): 101-105. Clark, J., L. Moore, A. Krasinskas, J. Way, J. Battey, J. Tamkun and R. A. Kahn (1993). 'Selective amplification of additional members of the ADP-ribosylation factor (ARF) family: cloning of additional human and Drosophila ARF-like genes.' Proc Natl Acad Sci U S A 90(19): 8952-8956. Conchon, S., X. Cao, C. Barlowe and H. R. Pelham (1999). 'Got1p and Sft2p: membrane proteins involved in traffic to the Golgi complex.' EMBO J 18(14): 3934-3946. Cox, J. S., C. E. Shamu and P. Walter (1993). 'Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase.' Cell 73(6): 1197-1206. D'Souza-Schorey, C. and P. Chavrier (2006). 'ARF proteins: roles in membrane traffic and beyond.' Nat Rev Mol Cell Biol 7(5): 347-358. Deitz, S. B., A. Rambourg, F. Kepes and A. Franzusoff (2000). 'Sec7p directs the transitions required for yeast Golgi biogenesis.' Traffic 1(2): 172-183. Donaldson, J. G. (2003). 'Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane.' J Biol Chem 278(43): 41573-41576. Donaldson, J. G. and C. L. Jackson (2011). 'ARF family G proteins and their regulators: roles in membrane transport, development and disease.' Nat Rev Mol Cell Biol 12(6): 362-375. Franzusoff, A., K. Redding, J. Crosby, R. S. Fuller and R. Schekman (1991). 'Localization of components involved in protein transport and processing through the yeast Golgi apparatus.' J Cell Biol 112(1): 27-37. Gillingham, A. K. and S. Munro (2007). 'The small G proteins of the Arf family and their regulators.' Annu Rev Cell Dev Biol 23: 579-611. Graham, T. R. (2004). 'Membrane targeting: getting Arl to the Golgi.' Curr Biol 14(12): R483-485. Gruhler, A., J. V. Olsen, S. Mohammed, P. Mortensen, N. J. Faergeman, M. Mann and O. N. Jensen (2005). 'Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.' Mol Cell Proteomics 4(3): 310-327. Harding, H. P., I. Novoa, Y. Zhang, H. Zeng, R. Wek, M. Schapira and D. Ron (2000). 'Regulated translation initiation controls stress-induced gene expression in mammalian cells.' Mol Cell 6(5): 1099-1108. Harding, H. P., Y. Zhang and D. Ron (1999). 'Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase.' Nature 397(6716): 271-274. Haze, K., H. Yoshida, H. Yanagi, T. Yura and K. Mori (1999). 'Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress.' Mol Biol Cell 10(11): 3787-3799. Higashio, H. and K. Kohno (2002). 'A genetic link between the unfolded protein response and vesicle formation from the endoplasmic reticulum.' Biochem Biophys Res Commun 296(3): 568-574. Jing, J., J. R. Junutula, C. Wu, J. Burden, H. Matern, A. A. Peden and R. Prekeris (2010). 'FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network.' Mol Biol Cell 21(17): 3041-3053. Jones, S., G. Jedd, R. A. Kahn, A. Franzusoff, F. Bartolini and N. Segev (1999). 'Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers.' Genetics 152(4): 1543-1556. Kahn, R. A. and A. G. Gilman (1986). 'The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein.' J Biol Chem 261(17): 7906-7911. Kapitzky, L., P. Beltrao, T. J. Berens, N. Gassner, C. Zhou, A. Wuster, J. Wu, M. M. Babu, S. J. Elledge, D. Toczyski, R. S. Lokey and N. J. Krogan (2010). 'Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action.' Mol Syst Biol 6: 451. Kawahara, T., H. Yanagi, T. Yura and K. Mori (1997). 'Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response.' Mol Biol Cell 8(10): 1845-1862. Kimmig, P., M. Diaz, J. Zheng, C. C. Williams, A. Lang, T. Aragon, H. Li and P. Walter (2012). 'The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis.' Elife 1: e00048. Lafourcade, C., J. M. Galan, Y. Gloor, R. Haguenauer-Tsapis and M. Peter (2004). 'The GTPase-activating enzyme Gyp1p is required for recycling of internalized membrane material by inactivation of the Rab/Ypt GTPase Ypt1p.' Mol Cell Biol 24(9): 3815-3826. Lee, F. J., L. A. Stevens, Y. L. Kao, J. Moss and M. Vaughan (1994). 'Characterization of a glucose-repressible ADP-ribosylation factor 3 (ARF3) from Saccharomyces cerevisiae.' J Biol Chem 269(33): 20931-20937. Lewis, M. J., B. J. Nichols, C. Prescianotto-Baschong, H. Riezman and H. R. Pelham (2000). 'Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes.' Mol Biol Cell 11(1): 23-38. Liu, Y. W., S. W. Lee and F. J. Lee (2006). 'Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane.' J Cell Sci 119(Pt 18): 3845-3855. Luke, M. R., L. Kjer-Nielsen, D. L. Brown, J. L. Stow and P. A. Gleeson (2003). 'GRIP domain-mediated targeting of two new coiled-coil proteins, GCC88 and GCC185, to subcompartments of the trans-Golgi network.' J Biol Chem 278(6): 4216-4226. Moore, K. A. and J. Hollien (2012). 'The unfolded protein response in secretory cell function.' Annu Rev Genet 46: 165-183. Morohashi, Y., Z. Balklava, M. Ball, H. Hughes and M. Lowe (2010). 'Phosphorylation and membrane dissociation of the ARF exchange factor GBF1 in mitosis.' Biochemical Journal 427: 401-412. Munro, S. (2011). 'The golgin coiled-coil proteins of the Golgi apparatus.' Cold Spring Harb Perspect Biol 3(6). Okamura, K., Y. Kimata, H. Higashio, A. Tsuru and K. Kohno (2000). 'Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast.' Biochem Biophys Res Commun 279(2): 445-450. Panic, B., O. Perisic, D. B. Veprintsev, R. L. Williams and S. Munro (2003). 'Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus.' Mol Cell 12(4): 863-874. Pasqualato, S., L. Renault and J. Cherfils (2002). 'Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication.' EMBO Rep 3(11): 1035-1041. Peyroche, A., S. Paris and C. L. Jackson (1996). 'Nucleotide exchange on ARF mediated by yeast Gea1 protein.' Nature 384(6608): 479-481. Powner, D. J. and M. J. Wakelam (2002). 'The regulation of phospholipase D by inositol phospholipids and small GTPases.' FEBS Lett 531(1): 62-64. Ramirez, I. B. and M. Lowe (2009). 'Golgins and GRASPs: holding the Golgi together.' Semin Cell Dev Biol 20(7): 770-779. Sato, M., K. Sato and A. Nakano (2002). 'Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response.' Biochem Biophys Res Commun 296(3): 560-567. Schroder, M. and R. J. Kaufman (2005). 'ER stress and the unfolded protein response.' Mutat Res 569(1-2): 29-63. Setty, S. R., M. E. Shin, A. Yoshino, M. S. Marks and C. G. Burd (2003). 'Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3.' Curr Biol 13(5): 401-404. Setty, S. R., T. I. Strochlic, A. H. Tong, C. Boone and C. G. Burd (2004). 'Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p.' Nat Cell Biol 6(5): 414-419. Sewell, J. L. and R. A. Kahn (1988). 'Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins.' Proc Natl Acad Sci U S A 85(13): 4620-4624. Shamu, C. E. and P. Walter (1996). 'Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus.' EMBO J 15(12): 3028-3039. Shi, Y., K. M. Vattem, R. Sood, J. An, J. Liang, L. Stramm and R. C. Wek (1998). 'Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control.' Mol Cell Biol 18(12): 7499-7509. Short, B., A. Haas and F. A. Barr (2005). 'Golgins and GTPases, giving identity and structure to the Golgi apparatus.' Biochim Biophys Acta 1744(3): 383-395. Sidrauski, C. and P. Walter (1997). 'The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response.' Cell 90(6): 1031-1039. Siniossoglou, S., S. Y. Peak-Chew and H. R. Pelham (2000). 'Ric1p and Rgp1p form a complex that catalyses nucleotide exchange on Ypt6p.' EMBO J 19(18): 4885-4894. Smolka, M. B., C. P. Albuquerque, S. H. Chen and H. Zhou (2007). 'Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.' Proc Natl Acad Sci U S A 104(25): 10364-10369. Torres-Quiroz, F., S. Garcia-Marques, R. Coria, F. Randez-Gil and J. A. Prieto (2010). 'The activity of yeast Hog1 MAPK is required during endoplasmic reticulum stress induced by tunicamycin exposure.' J Biol Chem 285(26): 20088-20096. Travers, K. J., C. K. Patil, L. Wodicka, D. J. Lockhart, J. S. Weissman and P. Walter (2000). 'Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation.' Cell 101(3): 249-258. Tsai, P. C., S. W. Lee, Y. W. Liu, C. W. Chu, K. Y. Chen, J. C. Ho and F. J. Lee (2008). 'Afi1p functions as an Arf3p polarization-specific docking factor for development of polarity.' J Biol Chem 283(24): 16915-16927. Tsukada, M. and D. Gallwitz (1996). 'Isolation and characterization of SYS genes from yeast, multicopy suppressors of the functional loss of the transport GTPase Ypt6p.' J Cell Sci 109 ( Pt 10): 2471-2481. Tsukada, M., E. Will and D. Gallwitz (1999). 'Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast.' Mol Biol Cell 10(1): 63-75. Welihinda, A. A. and R. J. Kaufman (1996). 'The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation.' J Biol Chem 271(30): 18181-18187. Wolf, J., M. Nicks, S. Deitz, E. van Tuinen and A. Franzusoff (1998). 'An N-end rule destabilization mutant reveals pre-Golgi requirements for Sec7p in yeast membrane traffic.' Biochem Biophys Res Commun 243(1): 191-198. Wooding, S. and H. R. Pelham (1998). 'The dynamics of golgi protein traffic visualized in living yeast cells.' Mol Biol Cell 9(9): 2667-2680. Wu, M., L. Lu, W. Hong and H. Song (2004). 'Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1.' Nat Struct Mol Biol 11(1): 86-94. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56397 | - |
| dc.description.abstract | 腺嘌呤核苷二磷酸核糖化因子(ADP-ribosylation factors, ARFs)在細胞中被認為扮演著調控囊泡運輸的重要角色。在酵母菌的研究中已經知道第三腺嘌呤核苷二磷酸核糖化相似因子(Arl3p)會募集第一腺嘌呤核苷二磷酸核糖化相似因子(Arl1p),Arl1p可進一步募集下游Imh1p到反式高爾基氏網(trans Golgi network)上並調控高基氏體(Golgi apparatus)的結構與功能。我們實驗室近來的研究發現一種腺嘌呤核苷二磷酸核糖化因子的鳥糞嘌呤核苷酸交換因子(Syt1p)可活化Arl1p並促進Imh1p被募集到高基氏體上,然而目前對於Syt1p的活性調控仍不是很清楚。本研究中我們發現Syt1p的磷酸化對調控Arl1p活化的重要性並進一步探討Syt1p-Arl1p-Imh1p在細胞中參與在囊泡運輸的功能。 | zh_TW |
| dc.description.abstract | ARF-like (ARL) proteins regulate several vesicular trafficking pathways. In yeast, Arl3p recruits Arl1p GTPase, which is specifically required for recruiting golgin protein Imh1p to the trans-Golgi network (TGN), to determine Golgi function and structure. Our previous data reported that Syt1p, a Sec7 domain-containing protein, could promote the activation of Arl1p and recruitment of Imh1p to the TGN. However, the regulation of Syt1p activity toward Arl1p activation remains unclear. In this study, we demonstrate that phosphorylation of Syt1p play an important role in the regulation of Arl1p activation and provide the evidence to support that Syt1p-Arl1p-Imh1p pathway may participate in the vesicular trafficking inside the cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:26:41Z (GMT). No. of bitstreams: 1 ntu-103-R01448012-1.pdf: 4117358 bytes, checksum: 2cd963c2430fe68b207927f061816f4a (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 謝誌 I
中文摘要 II Abstract III Contents IV Introduction 1 ADP-ribosylation factor (ARFs) 1 Guanine nucleotide exchange factors (GEF) 3 Arf-like proteins(ARLs) 5 Arl3p-Syt1p-Arl1p-Imh1p signaling pathway. 6 The phosphorylation on Syt1 N-terminal region is important for its GEF activity. 8 Unfolded protein response(UPR) 9 ER stress and trafficking 12 Genetic interactions between Ypt6p and Arl3p-Syt1p-Arl1p-Imh1p pathway. 13 Materials and Methods 15 Yeast two-hybrid analysis 15 Western blotting 15 Yeast transformation 16 HA beads pull-down 18 G-protein pull-down assay 19 UPR stress treatment 20 Results 21 Imh1p localization while tunicamycin treatment. 21 cis, medial and trans – Golgi Morphology while TM treatment. 22 Functions of Imh1p coiled-coil domain are required for the maintenance of Sft2p localization while TM treatment. 24 The increasing punctate Imh1p colocalize with GFP-Sft2p while TM treatment 25 TM treatment could increase the amount of actived Arl1p in cells. 26 The enhancement of phosphorylation on Syt1pS416 while TM treatment is Ire1p dependent. 27 Overexpression of Syt1pS416D is sufficient to result in the increment of punctate Imh1p in cells. 28 Phosphorylation on Serine-416 of Syt1p is required for the punctate pattern of GFP-Sft2p while TM treatment. 29 Overexpression of Syt1pS416D in ire1∆ cells is not sufficient to maintain Sft2p localization while TM treatment. 30 Tunicamycin sensitivity assay 31 Imh1p and Arl1p are able to suppress the mislocalization of GFP-Sft2p in ypt6∆ cells. 32 Syt1pS416D and Arl1p require Imh1p to suppress Sft2p mislocalization in ypt6∆ cells. 34 Syt1pS416D and Arl1p require Imh1p to suppress recycling defect of Snc1p in ypt6∆ cells. 35 Overexpression of Arl1p, Imh1p, Syt1pS416D and conctitutive active Hac1p can suppress temperature growth defect of ypt6Δ. 36 The function of Syt1p-Arl1p-Imh1p pathway in ypt6∆ cells while TM treatment 37 The interaction between Imh1p and Sft2p. 39 Discussion 40 Figures 45 Figure 1. Imh1p localization while TM treatment. 45 Figure 2. cis, medial and trans – Golgi Morphology while TM treatment. 46 Figure 3. Coiled-coil domain of Imp1p is required for the maintenance of GFP-Sft2p localization while TM treatment. 48 Figure 4. The increasing punctate Imh1p colocalize with GFP-Sft2p while TM treatment 49 Figure 5. TM treatment is able to increase the amount of actived Arl1p in cells. 50 Figure 6. The enhancement of phosphorylation on Syt1pS416 while TM treatment is Ire1p dependent. 51 Figure 7. Overexpression of Syt1pS416D is sufficient to result in increment of punctate Imh1p in cells. 52 Figure 8. Phosphorylation on Serine-416 of Syt1p is required for the punctate pattern of GFP-Sft2p while TM treatment. 53 Figure 9. Overexpression of Syt1pS416D in ire1∆ cells is not sufficient to maintain Sft2p localization while TM treatment. 54 Figure 10. Tunicamycin sensitivity assay 55 Figure 11. The model of the enhancement of Syt1p-Arl1p-Imh1p pathway while TM treatment. 56 Figure 12. Imh1p and Arl1p are able to suppress the mislocalization of GFP-Sft2p in ypt6∆ cells. 58 Figure 13. Syt1pS416D and Arl1p require Imh1p to suppress GFP-Sft2p mislocalization in ypt6∆ cells. 59 Figure 14. Syt1pS416D and Arl1p require Imh1p to suppress the recycling defect of Snc1p in ypt6∆ cells. 60 Figure 15. Over-expression of Arl1p, Imh1p, Syt1pS416D and conctitutive active Hac1p can suppress temperature growth defect of ypt6Δ. 61 Figure 16. The overexpression of Syt1pS416D, Arl1p and Imh1p is able to suppress the mislocalization of GFP-Sft2p and GFP-Snc1p in ypt6∆ cells. 62 Figure 17. The function of Syt1p-Arl1p-Imh1p pathway in ypt6∆ cells while TM treatment. 63 Figure 18. The interaction between Imh1p and Sft2p. 64 Tables 65 Table 1. Yeast strains used in this study 65 Table 2. Plasmids used in this study 66 Table 3. Antibodies used in this study 68 References 69 | |
| dc.language.iso | en | |
| dc.subject | 高基氏體 | zh_TW |
| dc.subject | 反式高爾基氏網 | zh_TW |
| dc.subject | Syt1p | zh_TW |
| dc.subject | Arl3p | zh_TW |
| dc.subject | Imh1p | zh_TW |
| dc.subject | Arl1p | zh_TW |
| dc.subject | Arl3p | zh_TW |
| dc.subject | Arl1p | zh_TW |
| dc.subject | ARFs | zh_TW |
| dc.subject | Imh1p | zh_TW |
| dc.subject | Syt1p | zh_TW |
| dc.subject | 反式高爾基氏網 | zh_TW |
| dc.subject | 高基氏體 | zh_TW |
| dc.subject | 囊泡運輸 | zh_TW |
| dc.subject | 囊泡運輸 | zh_TW |
| dc.subject | ARFs | zh_TW |
| dc.subject | Golgi | en |
| dc.subject | ARFs | en |
| dc.subject | Arl3p | en |
| dc.subject | Arl1p | en |
| dc.subject | Imh1p | en |
| dc.subject | Syt1p | en |
| dc.subject | trans-Golgi network | en |
| dc.subject | vesicular trafficking | en |
| dc.subject | ARFs | en |
| dc.subject | Arl3p | en |
| dc.subject | Arl1p | en |
| dc.subject | Imh1p | en |
| dc.subject | Syt1p | en |
| dc.subject | trans-Golgi network | en |
| dc.subject | Golgi | en |
| dc.subject | vesicular trafficking | en |
| dc.title | 酵母菌第一腺嘌呤核苷二磷酸核糖化相似因子之鳥糞嘌呤核苷酸交換因子的磷酸化對促進第一腺嘌呤核苷二磷酸核糖化相似因子活化之研究 | zh_TW |
| dc.title | Functional Characterization of Syt1p Phosphorylation
on Arl1p Activation in Saccharomyces cerevisiae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧述諄(Shu-Chun Teng),王昭雯(Chao-Wen Wang) | |
| dc.subject.keyword | ARFs,Arl3p,Arl1p,Imh1p,Syt1p,反式高爾基氏網,高基氏體,囊泡運輸, | zh_TW |
| dc.subject.keyword | ARFs,Arl3p,Arl1p,Imh1p,Syt1p,trans-Golgi network,Golgi,vesicular trafficking, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
