Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56391
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芳仁(Fang-Jen Lee)
dc.contributor.authorYi-Hao Wangen
dc.contributor.author王翊豪zh_TW
dc.date.accessioned2021-06-16T05:26:24Z-
dc.date.available2019-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation1. Beck, R., Z. Sun, F. Adolf, C. Rutz, J. Bassler, K. Wild, I. Sinning, E. Hurt, B. Brugger, J. Bethune and F. Wieland (2008). 'Membrane curvature induced by Arf1-GTP is essential for vesicle formation.' Proc Natl Acad Sci U S A 105(33): 11731-11736.
2. Behnia, R., B. Panic, J. R. Whyte and S. Munro (2004). 'Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p.' Nat Cell Biol 6(5): 405-413.
3. Bonifacino, J. S. and R. Rojas (2006). 'Retrograde transport from endosomes to the trans-Golgi network.' Nat Rev Mol Cell Biol 7(8): 568-579.
4. Bruinsma, P., R. G. Spelbrink and S. F. Nothwehr (2004). 'Retrograde transport of the mannosyltransferase Och1p to the early Golgi requires a component of the COG transport complex.' J Biol Chem 279(38): 39814-39823.
5. Chang, C. Y. and W. P. Huang (2007). 'Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy.' Mol Biol Cell 18(3): 919-929.
6. Chen, K. Y., P. C. Tsai, J. W. Hsu, H. C. Hsu, C. Y. Fang, L. C. Chang, Y. T. Tsai, C. J. Yu and F. J. Lee (2010). 'Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p.' J Cell Sci 123(Pt 20): 3478-3489.
7. Cox, A. D. and C. J. Der (2002). 'Ras family signaling: therapeutic targeting.' Cancer Biol Ther 1(6): 599-606.
8. D'Souza-Schorey, C. and P. Chavrier (2006). 'ARF proteins: roles in membrane traffic and beyond.' Nat Rev Mol Cell Biol 7(5): 347-358.
9. Eimer, S., A. Gottschalk, M. Hengartner, H. R. Horvitz, J. Richmond, W. R. Schafer and J. L. Bessereau (2007). 'Regulation of nicotinic receptor trafficking by the transmembrane Golgi protein UNC-50.' EMBO J 26(20): 4313-4323.
10. Freeze, H. H. (2007). 'Congenital Disorders of Glycosylation: CDG-I, CDG-II, and beyond.' Curr Mol Med 7(4): 389-396.
11. Geng, J., U. Nair, K. Yasumura-Yorimitsu and D. J. Klionsky (2010). 'Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae.' Mol Biol Cell 21(13): 2257-2269.
12. Gietz, R. D. and A. Sugino (1988). 'New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites.' Gene 74(2): 527-534.
13. Gillingham, A. K. and S. Munro (2007). 'The small G proteins of the Arf family and their regulators.' Annu Rev Cell Dev Biol 23: 579-611.
14. Goldberg, J. (1998). 'Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching.' Cell 95(2): 237-248.
15. He, C. and D. J. Klionsky (2007). 'Atg9 trafficking in autophagy-related pathways.' Autophagy 3(3): 271-274.
16. He, C., H. Song, T. Yorimitsu, I. Monastyrska, W. L. Yen, J. E. Legakis and D. J. Klionsky (2006). 'Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast.' J Cell Biol 175(6): 925-935.
17. Huang, C. F., L. M. Buu, W. L. Yu and F. J. Lee (1999). 'Characterization of a novel ADP-ribosylation factor-like protein (yARL3) in Saccharomyces cerevisiae.' J Biol Chem 274(6): 3819-3827.
18. Jackson, C. L. (2003). 'Membrane traffic: Arl GTPases get a GRIP on the Golgi.' Curr Biol 13(5): R174-176.
19. Jin, M., X. Liu and D. J. Klionsky (2013). 'SnapShot: Selective autophagy.' Cell 152(1-2): 368-368 e362.
20. Kamada, Y., T. Funakoshi, T. Shintani, K. Nagano, M. Ohsumi and Y. Ohsumi (2000). 'Tor-mediated induction of autophagy via an Apg1 protein kinase complex.' J Cell Biol 150(6): 1507-1513.
21. Kanki, T. and D. J. Klionsky (2008). 'Mitophagy in yeast occurs through a selective mechanism.' J Biol Chem 283(47): 32386-32393.
22. Kim, I., S. Rodriguez-Enriquez and J. J. Lemasters (2007). 'Selective degradation of mitochondria by mitophagy.' Arch Biochem Biophys 462(2): 245-253.
23. Kim, J., S. V. Scott, M. N. Oda and D. J. Klionsky (1997). 'Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway.' J Cell Biol 137(3): 609-618.
24. Klionsky, D. J. (2004). 'Cell biology: regulated self-cannibalism.' Nature 431(7004): 31-32.
25. Klionsky, D. J. and Y. Ohsumi (1999). 'Vacuolar import of proteins and organelles from the cytoplasm.' Annu Rev Cell Dev Biol 15: 1-32.
26. Lang, T., S. Reiche, M. Straub, M. Bredschneider and M. Thumm (2000). 'Autophagy and the cvt pathway both depend on AUT9.' J Bacteriol 182(8): 2125-2133.
27. Laufman, O., W. Hong and S. Lev (2011). 'The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport.' J Cell Biol 194(3): 459-472.
28. Lee, F. J., C. F. Huang, W. L. Yu, L. M. Buu, C. Y. Lin, M. C. Huang, J. Moss and M. Vaughan (1997). 'Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae.' J Biol Chem 272(49): 30998-31005.
29. Liu, Y. W., C. F. Huang, K. B. Huang and F. J. Lee (2005). 'Role for Gcs1p in regulation of Arl1p at trans-Golgi compartments.' Mol Biol Cell 16(9): 4024-4033.
30. Liu, Y. W., S. W. Lee and F. J. Lee (2006). 'Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane.' J Cell Sci 119(Pt 18): 3845-3855.
31. Lu, L. and W. Hong (2003). 'Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi.' Mol Biol Cell 14(9): 3767-3781.
32. Mari, M. and F. Reggiori (2007). 'Atg9 trafficking in the yeast Saccharomyces cerevisiae.' Autophagy 3(2): 145-148.
33. Miller, V. J. and D. Ungar (2012). 'Re'COG'nition at the Golgi.' Traffic 13(7): 891-897.
34. Mizuno-Yamasaki, E., F. Rivera-Molina and P. Novick (2012). 'GTPase networks in membrane traffic.' Annu Rev Biochem 81: 637-659.
35. Noda, T., J. Kim, W. P. Huang, M. Baba, C. Tokunaga, Y. Ohsumi and D. J. Klionsky (2000). 'Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways.' J Cell Biol 148(3): 465-480.
36. Ohashi, Y. and S. Munro (2010). 'Membrane delivery to the yeast autophagosome from the Golgi-endosomal system.' Mol Biol Cell 21(22): 3998-4008.
37. Oka, T., E. Vasile, M. Penman, C. D. Novina, D. M. Dykxhoorn, D. Ungar, F. M. Hughson and M. Krieger (2005). 'Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells.' J Biol Chem 280(38): 32736-32745.
38. Palacios, F., J. K. Schweitzer, R. L. Boshans and C. D'Souza-Schorey (2002). 'ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly.' Nat Cell Biol 4(12): 929-936.
39. Panic, B., J. R. Whyte and S. Munro (2003). 'The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus.' Curr Biol 13(5): 405-410.
40. Papinski, D., M. Schuschnig, W. Reiter, L. Wilhelm, C. A. Barnes, A. Maiolica, I. Hansmann, T. Pfaffenwimmer, M. Kijanska, I. Stoffel, S. S. Lee, A. Brezovich, J. H. Lou, B. E. Turk, R. Aebersold, G. Ammerer, M. Peter and C. Kraft (2014). 'Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase.' Mol Cell 53(3): 471-483.
41. Pasqualato, S., L. Renault and J. Cherfils (2002). 'Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication.' EMBO Rep 3(11): 1035-1041.
42. Pellon-Cardenas, O., J. Clancy, H. Uwimpuhwe and C. D'Souza-Schorey (2013). 'ARF6-regulated endocytosis of growth factor receptors links cadherin-based adhesion to canonical Wnt signaling in epithelia.' Mol Cell Biol 33(15): 2963-2975.
43. Ram, R. J., B. Li and C. A. Kaiser (2002). 'Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p.' Mol Biol Cell 13(5): 1484-1500.
44. Reggiori, F., T. Shintani, U. Nair and D. J. Klionsky (2005). 'Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts.' Autophagy 1(2): 101-109.
45. Reggiori, F., K. A. Tucker, P. E. Stromhaug and D. J. Klionsky (2004). 'The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure.' Dev Cell 6(1): 79-90.
46. Reggiori, F., C. W. Wang, U. Nair, T. Shintani, H. Abeliovich and D. J. Klionsky (2004). 'Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae.' Mol Biol Cell 15(5): 2189-2204.
47. Reggiori, F., C. W. Wang, P. E. Stromhaug, T. Shintani and D. J. Klionsky (2003). 'Vps51 is part of the yeast Vps fifty-three tethering complex essential for retrograde traffic from the early endosome and Cvt vesicle completion.' J Biol Chem 278(7): 5009-5020.
48. Schafer, D. A., C. D'Souza-Schorey and J. A. Cooper (2000). 'Actin assembly at membranes controlled by ARF6.' Traffic 1(11): 892-903.
49. Scott, S. V., J. Guan, M. U. Hutchins, J. Kim and D. J. Klionsky (2001). 'Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway.' Mol Cell 7(6): 1131-1141.
50. Setty, S. R., M. E. Shin, A. Yoshino, M. S. Marks and C. G. Burd (2003). 'Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3.' Curr Biol 13(5): 401-404.
51. Setty, S. R., T. I. Strochlic, A. H. Tong, C. Boone and C. G. Burd (2004). 'Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p.' Nat Cell Biol 6(5): 414-419.
52. Shintani, T., W. P. Huang, P. E. Stromhaug and D. J. Klionsky (2002). 'Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway.' Dev Cell 3(6): 825-837.
53. Singer-Kruger, B., M. Lasic, A. M. Burger, A. Hausser, R. Pipkorn and Y. Wang (2008). 'Yeast and human Ysl2p/hMon2 interact with Gga adaptors and mediate their subcellular distribution.' EMBO J 27(10): 1423-1435.
54. Smith, R. D., R. Willett, T. Kudlyk, I. Pokrovskaya, A. W. Paton, J. C. Paton and V. V. Lupashin (2009). 'The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin.' Traffic 10(10): 1502-1517.
55. Suvorova, E. S., R. Duden and V. V. Lupashin (2002). 'The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins.' J Cell Biol 157(4): 631-643.
56. Takai, Y., T. Sasaki and T. Matozaki (2001). 'Small GTP-binding proteins.' Physiol Rev 81(1): 153-208.
57. Tsai, P. C., J. W. Hsu, Y. W. Liu, K. Y. Chen and F. J. Lee (2013). 'Arl1p regulates spatial membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p.' Proc Natl Acad Sci U S A 110(8): E668-677.
58. Tsukada, M., E. Will and D. Gallwitz (1999). 'Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast.' Mol Biol Cell 10(1): 63-75.
59. Umekawa, M. and D. J. Klionsky (2012). 'The Cytoplasm-to-Vacuole Targeting Pathway: A Historical Perspective.' Int J Cell Biol 2012: 142634.
60. Ungar, D., T. Oka, E. E. Brittle, E. Vasile, V. V. Lupashin, J. E. Chatterton, J. E. Heuser, M. Krieger and M. G. Waters (2002). 'Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function.' J Cell Biol 157(3): 405-415.
61. van der Vaart, A., J. Griffith and F. Reggiori (2010). 'Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae.' Mol Biol Cell 21(13): 2270-2284.
62. Vetter, I. R. and A. Wittinghofer (2001). 'The guanine nucleotide-binding switch in three dimensions.' Science 294(5545): 1299-1304.
63. Volpicelli-Daley, L. A., Y. Li, C. J. Zhang and R. A. Kahn (2005). 'Isoform-selective effects of the depletion of ADP-ribosylation factors 1-5 on membrane traffic.' Mol Biol Cell 16(10): 4495-4508.
64. Webber, J. L. and S. A. Tooze (2010). 'New insights into the function of Atg9.' FEBS Lett 584(7): 1319-1326.
65. Wennerberg, K., K. L. Rossman and C. J. Der (2005). 'The Ras superfamily at a glance.' J Cell Sci 118(Pt 5): 843-846.
66. Whyte, J. R. and S. Munro (2001). 'The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic.' Dev Cell 1(4): 527-537.
67. Willett, R., T. Kudlyk, I. Pokrovskaya, R. Schonherr, D. Ungar, R. Duden and V. Lupashin (2013). 'COG complexes form spatial landmarks for distinct SNARE complexes.' Nat Commun 4: 1553.
68. Yamamoto, H., S. Kakuta, T. M. Watanabe, A. Kitamura, T. Sekito, C. Kondo-Kakuta, R. Ichikawa, M. Kinjo and Y. Ohsumi (2012). 'Atg9 vesicles are an important membrane source during early steps of autophagosome formation.' J Cell Biol 198(2): 219-233.
69. Yen, W. L., J. E. Legakis, U. Nair and D. J. Klionsky (2007). 'Atg27 is required for autophagy-dependent cycling of Atg9.' Mol Biol Cell 18(2): 581-593.
70. Yen, W. L., T. Shintani, U. Nair, Y. Cao, B. C. Richardson, Z. Li, F. M. Hughson, M. Baba and D. J. Klionsky (2010). 'The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy.' J Cell Biol 188(1): 101-114.
71. Yorimitsu, T. and D. J. Klionsky (2005). 'Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway.' Mol Biol Cell 16(4): 1593-1605.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56391-
dc.description.abstract腺核苷二磷酸醣化因子相似蛋白(ADP-ribosylation factor-like proteins, Arls)在反式高爾基體網絡(trans-Golgi network, TGN)的囊泡運輸中扮演著重要的角色,在酵母菌中,第三腺核苷二磷酸醣化因子相似蛋白(Arl3p)可以招集並活化第一腺核苷二磷酸醣化因子相似蛋白(Arl1p),使得下游的三個蛋白Imh1p,Gas1p,Gga2p能夠執行其正常的功能。然而,目前對於Arl3p是怎麼樣去調控Arl1p或是Arl3p其獨自的功能並不很了解。本文利用酵母菌作為模式生物來探討Arl3p的功能,我們利用西式點墨法及螢光顯微鏡的觀察發現,當ARL3 與參與在核內體(endosome)與TGN間運輸的基因同時做基因剃除時會造成細胞質至液胞傳遞途徑(cytoplasm-to-vacuole targeting pathway, Cvt pathway)的缺陷產生。除此之外,我們也發現Arl1p下游蛋白的招集會在Arl3p與Arl1p同時在酸基端標記螢光蛋白時產生缺陷。但是這些在酸基端標記螢光蛋白Arl3p與Arl1p對於在細胞內的位置,或是其生物性功能都是正常的。最後,我們發現Arl3p會參與在Cvt pathway,並藉由未認定的方式去調控Arl1p。zh_TW
dc.description.abstractArf-like GTPases (Arl) play important roles in the vesicle trafficking at the trans-Golgi network (TGN). In yeast, Arl3p recruits Arl1p and the activated Arl1p in turn recruits a GRIP domain-containing protein Imh1p to regulate Golgi structure and function. Arl3p and Arl1p also participate in the transport of a GPI-anchored protein from the TGN to the plasma membrane to determine cell wall integrity. In addition, Arl1p also controls the membrane docking of Gga proteins to the TGN. However, the underlying mechanisms of how Arl3p regulate Arl1p or the unique function of Arl3p still remain unclear. In this study, we found that yeast cells with the double deletion of ARL3 and endosome-Golgi trafficking components lead to cytoplasm to vacuole targeting (Cvt) blockage. Notably, Arl1p would not show defect in Cvt pathway, suggesting that Arl3p participates in the Cvt pathway in an Arl1p-independent manner. In addition, we further demonstrated that the recruitment of Arl1p downstream effectors to the TGN was differentially affected when Arl3p and Arl1p were C-terminally fused with fluorescence protein. However, Arl3p and Arl1p fused with fluorescence protein at their C-terminus were, like un-tagged Arl3p and Arl1p, localized to the TGN and retained their biological activity for cell wall integrity. Together, our findings suggest that Arl3p may participate in the regulation of Cvt pathway, which is independent of Arl1p, and may control Arl1p activity by unidentified mechanism.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:26:24Z (GMT). No. of bitstreams: 1
ntu-103-R01448013-1.pdf: 3515372 bytes, checksum: 6deac880b177f824787bd1640b103a95 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents1 中文摘要 VII
2 Abbreviations X
3 Introduction 1
3.1 Small GTP-binding Proteins 1
3.2 ADP-ribosylation Factors 2
3.3 ARF-like Proteins (ARLs) 3
3.4 The properties of Arl3p and Arl1p in yeast 4
3.5 COG complex 6
3.6 Cytoplasm-to-vacuole targeting (Cvt) pathway-the selective autophagy 7
3.7 Atg9p in yeast 9
4 Materials and Methods 11
4.1 Strains, media and microbiological techniques 11
4.2 Western blotting 13
4.3 Yeast transformation 14
4.4 HA beads pull-down (for Arl3p and Arl1p) 15
4.5 G-protein pull-down assay 17
5 Tables 19
5.1 Table 1. Yeast strains used in this study 19
5.2 Table 2. Plasmids used in this study 22
5.3 Table3. SILAC Mass analysis 25
6 Results 27
6.1 Part I. Arl3 in Cvt Pathway 27
6.1.1 ARL3 and COG8 have synthetic genetic interaction on Cvt Pathway 27
6.1.2 Ape1p maturation was affected in sys1cog8Δ but not in syt1cog8Δ 29
6.1.3 arl3cog8Δcause Cvt pathway defect through an Arl1p-independent mechanism 29
6.1.4 ARL3 and GMH1 have Synthetic Genetic Interaction on Cvt Pathway 30
6.1.5 YEL023cp and Slo1p do not involve in Arl3p downstream Arl1-independent pathway 31
6.1.6 Atg9p transport from peripheral pool to PAS was affected in arl3cog8Δ 32
6.1.7 Atg11p transportation from peripheral pool to PAS was slightly affected in arl3cog8Δ 33
6.1.8 Atg9p co-localized with Arl3p 34
6.1.9 Atg9p-GFP strongly accumulated in peripheral pool in arl3cog8atg1Δ cells 34
6.2 Part II. The Regulation of Arl1p by Arl3p 36
6.2.1 Active form Arl3p interact with Active form Arl1p 36
6.2.2 Forcing the interaction between Arl3p and Arl1p didn’t show significant difference in Congo red sensitivity assay 37
6.2.3 Fluorescent tagged Arl3p cannot recruit fluorescent protein tagged Arl1p onto TGN 38
6.2.4 Express fluorescent tagged Arl3p and Arl1p have normal distribution of downstream effector in arl3Δ. 38
6.2.5 Fluorescent protein tagged Arl3p cannot activate fluorescent protein tagged Arl1p 39
6.2.6 Fluorescent protein tagged Arl1pQ72L still can interact with Arl3pQ78L 40
7 Discussion 42
7.1 Part I. Arl3p in Cvt pathway 42
7.1.1 The novel effector in this Arl3p downstream Arl1p-independent pathway 42
7.1.2 High percentage of cells with Atg11p-GFP and mCherry-Ape1p co-localization in arl3cog8Δ strain 43
7.1.3 The intracellular location of accumulated Atg9p in arl3cog8Δ cells 43
7.1.4 Arl3p in endosome-Golgi trafficking system 44
7.2 Part II. The regulation of Arl1p by Arl3p 45
7.2.1 The physiological meaning of the interaction between active Arl3p and active Arl1p 45
8 Figures 46
8.1 Figure 1. ARL3 and COG8 have a genetic interaction, which can cause Ape1p processing defect, and it is a Arl3p activity dependent manner 46
8.2 Figure 2. ARL3 and COG8 have a genetic interaction, which can affect Ape1p transport, and it is an Arl3p activity dependent manner 48
8.3 Figure 3. Ape1 maturation was affected in sys1cog8Δ but not in syt1cog8Δ. 49
8.4 Figure 4. Arl3p may involve in Cvt pathway through an Arl1p-independent pathway 50
8.5 Figure 5. ARL3 and GMH1 have a genetic interaction, which can cause Ape1p processing defect, and it is driven by active form Arl3p through an Arl1p-independent pathway 51
8.6 Figure 6. ARL3 and GMH1 have a genetic interaction, which can affect Ape1p transport, and it is an Arl3p activity dependent manner 53
8.7 Figure 7. YEL023cp and Slo1p were not involved in Cvt pathway 54
8.8 Figure 8. Atg9 transport to PAS was affected in arl3cog8Δ 55
8.9 Figure 9. Atg11 transport to PAS was slightly affected in arl3cog8Δ 56
8.10 Figure 10. Arl3p-mRFP partially co-localized with Atg9p-GFP 57
8.11 Figure 11. Atg9p-GFP strongly accumulated in peripheral pool in arl3cog8atg1Δ cells 58
8.12 Figure 12. Model of Arl3p involved in Cvt pathway through regulating Atg9p transport with COG complex in an Arl1p-independent pathway. 59
8.13 Figure 13. Arl3pQ78L can interact directly with Arl1pQ72L 60
8.14 Figure 14. The congo red sensitivity assay of Arl3p and Arl1p 61
8.15 Figure 15. Fluorescent protein tagged Arl3p cannot recruit fluorescent protein tagged Arl1p onto TGN. 62
8.16 Figure 16. Fluorescent protein tagged Arl3p have the activity rescue the congo red sensitivity. 63
8.17 Figure 17. Arl3-mRFP or Arl1-mRFP did not affect the localization of Imh1p, Gas1p and Gga2p. 64
8.18 Figure 18. Fluorescent protein tagged Arl3p cannot activate fluorescent protein tagged Arl1p. 66
8.19 Figure 19. Fluorescent protein tagged Arl1pQ72L still can interact with Arl3pQ78L 67
9 Reference 68
dc.language.isoen
dc.subject囊泡運輸zh_TW
dc.subjectArl1pzh_TW
dc.subject細胞質至液胞傳遞途徑zh_TW
dc.subject反式高爾基體網絡zh_TW
dc.subjectArl3pzh_TW
dc.subjectArl3pen
dc.subjectArl1pen
dc.subjectvesicle transporten
dc.subjectTGNen
dc.subjectCvt pathwayen
dc.title酵母菌第三腺核苷二磷酸核醣化因子相似蛋白之功能性探討zh_TW
dc.titleFunctional Characterization of an Arf-like protein Arl3p in Saccharomyces cerevisiaeen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃偉邦(Wei-Pang Huang),王昭雯(Chao-Wen Wang),鄧述諄(Shu-Chun Teng)
dc.subject.keywordArl3p,Arl1p,囊泡運輸,反式高爾基體網絡,細胞質至液胞傳遞途徑,zh_TW
dc.subject.keywordArl3p,Arl1p,vesicle transport,TGN,Cvt pathway,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved