Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王佩華(Pei-Hwa Wang)
dc.contributor.authorYu-Chen Linen
dc.contributor.author林雨蓁zh_TW
dc.date.accessioned2021-06-16T05:26:08Z-
dc.date.available2019-09-03
dc.date.copyright2014-09-03
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation王之仰、江友中、邱明堂、徐志宏、張誌益、莊國賓、傅龍明、陳又嘉、陳福旗、陳幼光、廖明輝、劉宏仁、鄭雪玲。2011。分子檢測技術實習,第 87-110 頁。國立屏東科技大學。屏東縣。
尤恩民。2008。草蝦基因組的遺傳分析:種源鑑定及遺傳圖譜之建立。博士論文。國立臺灣大學動物學研究所。臺北市。
世界動物衛生組織。2014。中華民國外交部。http://www.mofa.gov.tw/igo/ News_Content.aspx?n=163B8937FBE0F186&sms=53182B822F41930C&s=55AF0CB9BAD8C406
李志琦。2011。以繁殖體壓力及遺傳多樣性探討臺灣入侵紅火蟻成功入侵模式。碩士論文。國立臺灣大學昆蟲學研究所。臺北市。
許芯芯。2010。用微衛星標幟與粒線體 DNA 探討臺灣地區大冠鷲之遺傳結構與多樣性。碩士論文。國立臺灣大學動物科學技術研究所。臺北市。
許桂森。2005。因應動物保護國際化的變革與作法。農政與農情 158:54-59。
曾晴賢、王昱人。1999。櫻花鉤吻鮭基因均質化的危機。1999 年生物多樣性研討會論文集,第 251-257 頁。臺灣大學生物多樣性研究中心。臺北市。
湯夢汎。2013。近年來臺灣寵物產業發展情形及相關管理措施。農政與農情 247:90-96。
湯夢汎。2009。特定寵物業管理辦法修正簡介。農政與農情 202:30-32。
張怡穎。2011。臺灣長鬃山羊(Capricornis swinhoei)圈養族群於非侵入式遺傳分析暨微衛星標幟開發之探討。碩士論文。國立臺灣大學動物科學技術學研究所。臺北市。
張秀鑾。2007。基因多樣性分析。臺灣畜產種源資訊網。http://www.angrin.tlri.gov.tw/seminar/20070821/35.pdf
動物保護資訊網。2014。動保資源。行政院農業委員會。臺北市。http://animal.coa.gov.tw/html3/index_06.html
行政院農委會動植物防疫檢疫局。2014。貓狗輸出入專區。行政院農業委員會動植物防疫檢疫局。臺北市。http://www.baphiq.gov.tw/content_edit.php? menu= 1326&typeid=1359&typeid2=1551
鄭珮綺。2013。全球寵物產品市場發展現況與趨勢。IEK 產業情報網。http://ieknet.iek.org.tw/BookView.do?rptidno=343084490
Agha, S. H., F. Pilla, S. Galal, I. Shaat, M. D’andrea, S. Reale, A. Z. A. Abdelsalam, and M. H. Li. 2008. Genetic diversity in Egyptian and Italian goat breeds measured with microsatellite polymorphism. J. Anim. Breed. Genet. 125: 194-200.
Barker, J. S. F. 1994. A global protocol for determining genetic distances among domestic livestock breeds. Proc. 5th World Cong. Genet. Appl. Livest. Prod. 21: 501-508.
Barry, G. H. 2007. Phylogenetic trees made easy: a how-to manual. 3rd ed. Sinauer Assoc. Inc., Sunderland, MA, USA.
Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331.
Chia, R., F. Achilli, M. F. Festing, and E. M. Fisher. 2005. The origins and uses of mouse outbred stocks. Nat. Genet. 37: 1181-1186.
Coomber, N., V. A. David, S. J. O’Brien, and M. Menotti-Raymond. 2007. Validation of a short tandem repeat multiplex typing system for genetic individualization of domestic cat samples. Croat. Med. J. 48: 547-555.
Culver, M., M. A. Menotti-Raymond, and S. J. O'Brien. 2001. Patterns of size homoplasy at 10 microsatellite loci in pumas (Puma concolor). Mol. Biol. Evol. 18: 1151-1156.
DeNise, S., E. Johnston, J. Halverson, K. Marshall, D. Rosenfeld, S. McKenna, T. Sharp, and J. Edwards. 2004. Power of exclusion for parentage verification and probability of match for identity in American Kennel Club breeds using 17 canine microsatellite markers. Anim. Genet. 35: 14-17.
Dib, C., S. Faure, C. Fizames, D. Samson, N. Drouot, A. Vignal, P. Millasseau, S. Marc, J. Hazan, E. Seboun, M. Lathrop, G. Gyapay, J. Morissette, and J. Weissenbach. 1996. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380: 152-154.
Dieringer, D., and C. Schlotterer. 2003. MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3: 167-169.
Dvorak, J., J. Halverson, and T. Stevenson. 1999. Microsatellite sequences for canine genotyping. U.S. Patent No. 5874217.
Eichmann, C., B. Berger, M. Steinlechner, and W. Parson. 2005. Estimating the probability of identity in a random dog population using 15 highly polymorphic canine STR markers. Forensic Sci. Int. 151: 37-44.
Efron, B., E. Halloran, and S. Holmes. 1996. Bootstrap confidence levels for phylogenetic trees. Proc. Natl. Acad. Sci. (USA) 93: 13429-13434.
Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620.
Evett, I. W., and B. S. Weir. 1998. Interpreting DNA evidence: statistical genetics for forensic scientists.1st ed. Sinauer Assoc. Inc., Sunderland, MA, USA.
Farrer, L. A., R. H. Myers, L. A. Cupples, and P. M. Conneally. 1988. Considerations in using linkage analysis as a presymptomatic test for Huntington's disease. J. Med. Genet. 25: 577-588.
Felsenstein, J. 2002. Phylogeny Inference Package (PHYLIP). Department of genomes scuences and department of Genetics, Univ. of Washington, Seattle, WA, USA.
Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
Festing, M. F. W., and C. Lutz. 2010. Handbook of Laboratory Animal Science. 3rd ed. Chp. 9. Hau, J., and S. J . Schapiro, ed. CRC Press, Boca, Raton, FL, USA.
Fisher, R. A. 1953. Population genetics. Proc. Roy. Soc. B. 141: 510-523.
Fonteque, G. V., J. Battilana, E. Paludo, and C. A. D. V. Lima-Rosa. 2014. Genetic polymorphism of fifteen microsatellite loci in Brazilian (blue-egg Caipira) chickens. Pesquisa Vet. Brasil. 34: 98-102.
Francisco, L. V., A. A. Langsten, C. S. Mellersh, C. L. Neal, and E. A. Ostrander. 1996. A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm. Genome 7: 359-362.
Gagliardi, R., L. Silvia, C. Garcia, and M. V. Arruga. 2011. Microsatellite characterization of Cimarron Uruguayo dogs. Genet. Mol. Biol. 34: 165-168.
Gemayel, R., M. D. Vinces, M. Legendre, and K. J. Verstrepen. 2010. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu. Rev. Genet. 44: 445-477.
Gerber, S., S. Mariette, R. Streiff, C. Bodenes, and A. Kremer. 2000. Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol. Ecol. 9: 1037-1048.
Glenn, T. C., and N. A. Schable. 2005. Isolating microsatellite DNA loci. Meth. Enzymol. 395: 202-222.
Green, M. R., and J. Sambrook. 2012. Preparation of plasmid DNA by Alkaline Lysis with SDS: Minipreps. Volume 1. Page 11-14 in molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
Guo, S. W., and E. A. Thompson. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361-372.
Guo, X., and R. Elston. 1999. Linkage information content of polymorphic genetic markers. Hum. Hered. 49: 112-118.
Halverson, J., and C. Basten. 2005. A PCR multiplex and database for forensic DNA identification of dogs. J. Forensic Sci. 50: 352-363.
Hille, A., O. Pelz, M. Trinzen, M. Schlegel, and G. Peters. 2000. Using microsattelite markers for genetic individualization of European wildcats (Felis silvestris) and domestic cats. Bonn. Zool. Beitr. 49: 165-176.
Hoshino, A. A., J. P. Bravo, P. M. Nobile, and K. A. Morelli. 2012. Microsatellites as tools for genetic diversity analysis. Page 149-170 in Genetic Diversity in Microorganisms. M. Calisken, ed. InTech open access publisher, Rijeka, Croatia.
Ichikawa, Y., K. Takagi, S. Tsumagari, K. Ishihama, M. Morita, M. Kanemaki, M. Takeishi, and H. Takahashi. 2001. Canine parentage testing based on microsatellite polymorphism. J. Vet. Med. Sci. 63: 1209-1213.
Irion, D. N., A. L. Schaffer, T. R. Famula, M. L. Eggleston, S. S. Hughes, and N. C. Pedersen. 2003. Analysis of genetic variation in 28 dog breed populations with 100 microsatellite markers. J. Hered. 94: 81-87.
Jamieson, A. 1965. The genetics of transferrin in cattle. Heredity 20: 419-441.
Johnson, W. E., J. A. Godoy, F. Palomares, M. Delibes, M. Fernandes, E. Revilla, and S. J. O'Brien. 2004. Phylogenetic and phylogeographic analysis of Iberian lynx populations. J. Hered. 95: 19-28.
Johnson, W. E., J. P. Slattery, E. Eizirik, J. H. Kim, M. Menotti-Raymond, C. Bonacic, R. Cambre, P. Crawshaw, A. Nunes, H. N. Seuanez, M. A. M. Moreira, K. L. Seymour, F. Simon, W. Swanson, and S. J. O’Brien. 1999. Disparate phylogeographic patterns of molecular genetic variation in four closely related South American small cat species. Mol. Ecol. 8: S79-S94.
Jia, X. Y., Y. W. Li, D. Q. Wang, H. W. Tian, B. Tu, and D. Q. Chen. 2013. Characterization and cross-species amplification of 11 polymorphic microsatellite loci in Liobagrus marginatoides. Conserv. Genet. Resour. 5: 1087-1089.
Kang, B. T., K. S. Kim, M. S. Min, Y. J. Chae, J. W. Kang, J. Yoon, J. Choi, J. K. Seong, H. C. Park, J. An, M. H. Lee, H. M. Park, and H. Lee. 2009. Microsatellite loci analysis for the genetic variability and the parentage test of five dog breeds in South Korea. Genes Genet. Syst. 84: 245-251.
Kim, K. S., Y. Tanabe, C. K. Park, and J. H. Ha. 2001. Genetic variability in East Asian dogs using microsatellite loci analysis. J. Hered. 92: 398-403.
Kimura, M., and J. F. Crow. 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725-738.
Kirk, H., and J. R. Freeland. 2011. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int. J. Mol. Sci. 12: 3966-3988.
Kryger, U., T. J. Robinson, and P. Bloomer. 2002. Isolation and characterization of six polymorphic microsatellite loci in South African hares (Lepus saxatilis F. Cuvier, 1823 and Lepus capensis Linnaeus, 1758). Mol. Ecol. Notes 2: 422-424.
Kun, T., L. A. Lyons, B. N. Sacks, R. E. Ballard, C. Lindquist, and E. J. Wictum. 2013. Developmental validation of Mini-DogFiler for degraded canine DNA. Forensic Sci. Int.: Genetics 7: 151-158.
Kurushima, J. D., J. A. Collins, J. A. Well, and H. B. Ernest. 2006. Development of 21 microsatellite loci for puma (Puma concolor) ecology and forensics. Mol. Ecol. Notes 6: 1260-1262.
Leberg, P. L. 2002. Estimating allelic richness: effects of sample size and bottlenecks. Mol. Ecol. 11: 2445-2449.
Lipinski, M. J., Y. Amigues, M. Blasi, T. E. Broad, C. Cherbonnel, G. J. Cho, S. Corley, P. Daftari, D. R. Delattre, S. Dileanis, J. M. Flynn, D. Grattapaglia, A. Guthrie, C. Harper, P. L. Karttunen, H. Kimura, G. M. Lewis, M. Longeri, J. C. Meriaux, M. Morita, R. C. Morrin-O’Donnell, T. Niini, N. C. Pedersen, G. Perrotta, M. Polli, S. Rittler, R. Schubbert, M. G. Strillacci, H. van Haeringen, W. van Haeringen, and L. A. Lyons. 2007. An international parentage and identification panel for the domestic cat (Felis catus). Anim. Genet. 38: 371-377.
Loxterman, J. L. 2011. Fine scale population genetic structure of pumas in the Intermountain West. Conserv. Genet. 12: 1049-1059.
Lust, G. 1997. An overview of the pathogenesis of canine hip dysplasia. J. Am. Vet. Med. Assoc. 210: 1443-1445.
Menotti-Raymond, M. A., V. A. David, L. L. Wachter, J. M. Butler, and S. J. O’Brien. 2005. An STR forensic typing system for genetic individualization of domestic cat (Felis catus) samples. J. Forensic Sci. 50: 1061-1070.
Nei, M. 1987. Molecular evolutionary genetics. Columbia Univ. Press, NY, USA.
Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. 41: 225-233.
Nei, M. 1972. Genetic distance between populations. Am. Nat. 106: 283-292.
O’Connell, M., M. C. Dillon, and J. M. Wright. 1998. Development of primers for polymorphic microsatellite loci in the Pacific herring. Mol. Ecol. 7: 357-363.
Ogden, R., R. J. Mellanby, D. Clements, A. G. Gow, R. Powell, and R. McEwing. 2012. Genetic data from 15 STR loci for forensic individual identification and parentage analyses in UK domestic dogs (Canis lupus familiaris). Forensic Sci. Int.: Genetics 6: 63-65.
Oliveira, E. J., J. G. Padua, M. I. Zucchi, R. Vencovsky, and M. L. C. Vieira. 2006. Origin, evolution and genome distribution of microsatellites. Genet. Mol. Biol. 29: 294-307.
Olsen, J. B., P. Bentzen, and J. E. Seeb. 1998. Characterization of seven microsatellite loci derived from pink salmon. Mol. Ecol. 7: 1083-1090.
Ostrander, E. A., F. A. Mapa, M. Yee, and J. Rine. 1995. One hundred and one new simple sequence repeat-based markers for the canine genome. Mamm. Genome 6: 192-195.
Ostrander, E. A., G. F. Sprague Jr, and J. Rine. 1993. Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog. Genomics 16: 207-213.
Paetkau, D., and C. Strobeck. 1994. Microsatellite analysis of genetic variation in black bear population. Mol. Ecol. 3: 489-495.
Paetkau, D., L. P. Waits, P. L. Clarkson, L. Craighead, E. Vyse, R. Ward, and C. Strobeck. 1998. Variation in genetic diversity across the range of North American brown bears. Conserv. Biol. 12: 418-429.
Parine, N. R., D. Kumar, A. A. K. Pathan, M. S. Elrobh, W. Khan, and M. Alanazi. 2013. Characterization and cross-species amplification of microsatellite markers in African Silverbill (Lonchura cantans). Genet. Mol. Res. 12: 5634-5639.
Park, S. D. E. 2001. Trypanotolerance in West African cattle and the population genetic effects of selection. Ph. D. Thesis. Trinity College, Univ. of Dublin, Ireland.
Peakall, R., and P. E. Smouse. 2012. GeneAlEx ver6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 2537-2539.
Pritchard, J. K., M. Stephen, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
Pritchard, J. K., X. Wen, and D. Falush. 2010. Documentation for structure software: Version 2.3. Retrieved from: http://pritchardlab.stanford.edu/structure_software/ release_versions/v2.3.4/structure_doc.pdf
Powell, W., G. C. Machray, and J. Provan. 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1: 215-222.
Qu, W., Y. Zhou, Y. Zhang, Y. Lu, X. Wang, D. Zhao, Y. Yang, and C. Zhang. 2012. MFEprimer-2.0: a fast thermodynamics-based program for checking PCR primer specificity. Nucleic Acids Res. 40: 205-208.
Radko, A., E. Słota, and J. Marczyńska. 2009. Usefulness of a supplementary set of microsatellite DNA markers for parentage testing in cattle. Pol. J. Vet. Sci. 13: 313-318.
Rooney, N., and D. Sargan. 2008. Pedigree dog breeding in the UK. Royal Society for the Prevention of Cruelty to Animals. Retrieved from: http://www.terrierman.com/ PDE-Sum-RSPCA.pdf
Rosenberg, N. A., T. Burke, K. Elo, M. W. Feldman, P. J. Freidlin, M. A. M. Groenen, J. Hillel, A. Maki-Tanila, M. Tixier-Boichard, A. Vignal, K. Wimmers, and S. Weigend. 2001. Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics 159: 699-713.
Rousset, F. 2007. GENEPOP ’007: a complete re-implementation of the GENEPOP
software for Windows and Linux. Mol. Ecol. Res. 8: 103-106.
Rozen, S., and H. J. Skaletsky. 2000. Primer 3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386.
Saitou, N., and M. Nei. 1987. The Neighbor-joining method: a method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
Selkoe, K. A., and R. J. Toonen. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Let. 9: 615-629.
Singh, A., A. Gaur, K. Shailaja, B. Satyare-Bala, and L. Singh. 2004. A novel microsatellite (STR) marker for forensic identification of big cats in India. Forensic Sci. Int. 141: 143-147.
Soltis, P. S., and D. E. Soltis. 2003. Applying the bootstrap in phylogeny reconstruction. Stat. Sci. 18: 256-267.
Starr, C., R. Taggart, C. Evers, and L. Starr. 2012. Biology: The unity and diversity of life. 13th ed. Chp 46. Brooks/Cole, Belmont, CA, USA.
Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. (USA) 101: 11030-11035.
The Kennel Club. 2014. Retrieved from: http://www.thekennelclub.org.uk/services/ public/findapuppy/Default.aspx
van Asch, B., C. Alves, L. Gusmao, V. Pereira, F. Pereira, and A. Amorim. 2009. A new autosomal STR nineplex for canine identification and parentage testing. Electrophoresis 30: 417-423.
van Hooft, W. F., O. Hanotte, P. W. Wenink, A. F. Groen, Y. Sugimoto, H. H. T. Prins, and A. Teale. 1999. Applicability of bovine microsatellite markers for population genetic studies on African buffalo (Syncerus caffer). Anim. Genet. 30: 214-220.
Waits, L. P., G. Luikart, and P. Taberlet. 2001. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol. 10: 249-256.
Wang, R., L. Zheng, Y. T. Toure, T. Dandekar, and F. C. Kafatos. 2001. When genetic distance matters: measuring genetic differentiation at microsatellite loci in whole-genome scans of recent and incipient mosquito species. Proc. Natl. Acad. Sci. (USA) 98: 10769-10774.
Wictum, E., T. Kun, C. Lindquist, J. Malvick, D. Vankan, and B. Sacks. 2013. Developmental validation of DogFiler, a novel multiplex for canine DNA profiling in forensic casework. Forensic Sci. Int.: Genetics 7: 82-91.
Wigginton, J. E., D. J. Cutler, and G. R. Abecasis. 2005. A note on exact tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 76: 887-893.
Wiseman, R., C. O’Ryan, and E. H. Harley. 2000. Microsatellite analysis reveals that domestic cat (Felis catus) and southern African wild cat (F. lybica) are genetically distinct. Anim. Conserv. 3: 221-228.
Wright, S. 1965. The interpretation of population structure by F-Statistics with special regard to systems of mating. Evolution 19: 395-420.
Wright, S. 1951. The genetical structure of populations. Ann. Eugen. 15: 323-354.
Yeh, F. C., R. C. Yang, T. Boyle, Z. H. Ye, and J. X. Mao. 1999. POPGENE, version 1.32: the user friendly software for population genetic analysis. Center for Molecular Biology and Biotechnology, Univ. of Alberta, Canada.
Zenke, P., B. Egyed, L. Zoldag, and Z. Padar. 2011. Population genetic study in Hungarian canine populations using forensically informative STR loci. Forensic Sci. Int.: Genetics 5: 31-36.
Zane, L., L. Bargelloni, and T. Patarnello. 2002. Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16.
Zane, L., S. Marcato, L. Bargelloni, E. Bortolotto, C. Papetti, M. Simonato, V. Varotto, and T. Patarnello. 2006. Demographic history and population structure of the Antarctic silverfish (Pleuragramma antarcticum). Mol. Ecol. 15: 4499-4511.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56385-
dc.description.abstract近年來臺灣的動物保護意識逐漸高漲,因此犬、貓因近親繁殖而使得遺傳缺陷疾病之發生率有提高的現象,備受大眾所關注。本試驗之目的主要藉由開發適宜國內犬、貓族群分析之新微衛星標幟(microsatellite markers),並建立套組,供進行犬、貓遺傳結構之檢測。
本試驗採用選擇性雜合法(selective hybridization),將含有重複序列片段(repeat units)之探針(probes)與一公一母之犬隻基因體 DNA 樣本進行雜合(hybridization),以建立微衛星標幟豐富化之基因庫(microsatellite-enriched genomic library)。其中,在 230 個陽性選殖菌落中,共有 65 個菌落可經由 Primer 3 Plus 軟體設計出針對重複片段之引子序列(primer sequence)。將所得之引子組進行包含三個品種:74隻臺灣米格魯(Beagle)、8 隻日本米格魯、17 隻比熊(Bichon)及14 隻雪納瑞(Schnauzer),共計 113 隻犬隻 DNA 樣本之微衛星基因座(loci)多態性檢測。試驗結果顯示,篩選出 14 組新微衛星標幟在三個犬隻品種皆具有多態性,且其重複片段之種類大多為雙核苷酸(dinucleotide)。14 組新微衛星基因座之交替基因數(number of alleles, Na) 與有效交替基因數(number of effective alleles, Ne)之平均及標準偏差各為 6.3±3.4 和 3.6±1.6;期望異質度(expected heterozygosity, HE)與觀測異質度(observed heterozygosity, HO)之平均及標準偏差分別為 0.662±0.162 與 0.567±0.136;多態性訊息含量(polymorphic information content, PIC)之平均及標準偏差為 0.612±0.179。另外,FIS 之平均及標準偏差為 0.002±0.128,FST 之平均及標準偏差為 0.212±0.103,且 FIT 之平均及標準偏差為 0.209±0.173。前述變量(parameter)顯示這些新篩選的微衛星標幟具有高度多態性,大幅提升個體鑑別之效力:全部新微衛星基因座之綜合個體鑑別率(probability of identity, P(ID))與綜合近親個體鑑別率(probability of identity among sibs, P(ID)sib)分別為 1.7×10-12 與 1.6×10-5。另外,此 14 組新微衛星標幟之親子排除率(power of exclusion, PE)為 99.98%。利用鄰位連接(neighbor-joining)法根據遺傳距離所繪製之親緣關係樹中可觀察到,此 14 組新微衛星標幟可將試驗族群區分為三個明顯的主要群集(clusters),即可依照品種區分為雪納瑞、比熊及米格魯;其中,米格魯族群又可分為臺灣族群與日本族群。再者,利用主座標分析法(principal coordinate analysis, PCoA)分析試驗族群間的相異程度,其所繪製之 3D 圖顯示,試驗犬隻可正確地依據品種不同而被區分出來,並且可明確地區分出不同來源的米格魯犬隻,而第一座標軸、第二座標軸及第三座標軸分別可解釋 44.15、26.35 及 19.97% 的遺傳變異。
本研究另外從文獻中擇取 22 組重複片段為四核苷酸(tetranucleotide)之高多態性微衛星標幟,進行 25 隻孟加拉豹貓(Bengal)之基因型分析。試驗結果顯示,只有 14 組微衛星標幟在此貓隻品種可成功增幅且具有多態性。所有基因座之交替基因數與有效交替基因數之平均及標準偏差各為 5.8±1.8 和 3.7±1.3;而期望異質度與觀測異質度之平均及標準偏差分別為 0.726±0.095 與 0.660±0.157;多態性訊息含量之平均及標準偏差為 0.669±0.104;而其 FIS 之平均及標準偏差為 0.097±0.167。另外,綜合個體鑑別率與綜合近親個體鑑別率分別為 9.7×10-14 與 1.1×10-4。而此 14 組微衛星標幟之親子排除率為 99.99%。藉由前述各變量所顯示之高度多態性與兩項個體鑑別率,證實此 14 組微衛星標幟足夠作為臺灣之孟加拉豹貓族群的遺傳監控與個體鑑別工具。
綜合所述,本試驗所應用之高多態性犬、貓微衛星標幟,可供進行國內犬、貓之族群遺傳結構檢測與個體鑑別。
zh_TW
dc.description.abstractAlong with the rise of animal protection consciousness in Taiwan, the public pays more attention on dog and cat genetic deficiencies due to inbreeding in the pet market. The goal of this study was to isolate novel microsatellite markers and develop a set of microsatellite markers for monitoring their genetic structure of the domestic dog and cat populations in Taiwan.
The microsatellite-enriched genomic library was constructed from one male and one female dog DNA samples by selective hybridization with mixed probes containing different repeat units. There were 230 positive clones selected, and only 65 clones could be desiged primers for single repeats by the Primer 3 Plus software. A total of 113 DNA samples of three dog breeds, including 74 Beagles from Taiwan, 8 Beagles from Japan, 17 Bichon, and 14 Schnauzer, were used in the following polymorphic tests. The results showed that only 14 sets of novel microsatellite markers were polymorphic in the three breeds; among those markers, the majority of repeat unit was dinucleotide. The average number of alleles (Na) and the average number of effective alleles (Ne) were 6.3±3.4 and 3.6±1.6, respectively. The average expected heterozygosity (HE) and average observed heterozygosity (HO) were 0.662±0.162 and 0.567±0.136, respectively. The estimated of average polymorphic information content (PIC) was 0.612±0.179. The FIS was 0.002±0.128; the FST was 0.212±0.103 and the FIT was 0.209±0.173. The high level of genetic diversity observed in these novel microsatellite markers provided a high discriminating power. The estimated probability of identity (P(ID)) and the probability of identity among sibs (P(ID)sib) of the 14 sets of novel microsatellite markers amounted to 1.7×10-12 and 1.6×10-5, respectively. Furthermore, power of exclusion (PE) of the 14 sets of novel microsatellite markers in this study is 99.98%。The neighbor-joining trees were constructed among the three breeds on the basis of the genetic distance estimated from the 14 sets of novel microsatellite markers. The configuration indicated that the 14 sets of novel microsatellite markers were sufficient to correctly cluster the three dog breeds — Beagle, Bichon, and Schnauzer. Still, the subgroups of Japanese Beagle within the Beagle cluster were clearly separated from Taiwanese Beagle. Principal coordinate analysis (PCoA) based on the allele frequency of 14 loci was used to visualize the dissimilarities among these experiment populations. The 3D plot showed that the dogs could be accurately separated by these 14 loci baled on different breeds; moreover, the Beagles from different sources were also distinguished. The first, the second, and the third principal coordinates could be used to explain 44.15, 26.35 and 19.97% of the genetic variation.
In the second part of this study, genomic DNA samples were extracted from blood samples of 25 Bengal cats. Twenty-two sets of highly polymorphic microsatellite markers containing tetranucleotide repeat unit were chosen from a previous study. The results showed that there were only 17 sets of microsatellite markers amplified and 14 sets of them showed polymorphism in the Bengal cat population tested. The average Na and the average Ne were 5.8±1.8 and 3.7±1.3, respectively. Also, the average HE and HO per locus were 0.726±0.095 and 0.660±0.157, respectively. Average PIC was 0.669±0.104, and FIS was 0.097±0.167. P(ID) and P(ID)sib of all 14 sets of markers were 9.7×10-14 and 1.1×10-4, respectively. PE of all 14 sets of microsatellite markers is 99.99%。These parameters showed that the 14 loci could sufficiently monitor the genetic structure and individual identity of Bengal population in Taiwan.
The results of this study could be used as powerful examination methods for genetic background structure of the domestic dog and cat populations in Taiwan.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:26:08Z (GMT). No. of bitstreams: 1
ntu-103-R01626017-1.pdf: 2228829 bytes, checksum: b1df8e19868279be84e2fb7eeab48303 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄................................................Ⅰ
圖次................................................Ⅱ
表次................................................Ⅲ
附圖次..............................................Ⅳ
附表次..............................................Ⅴ
中文摘要............................................1
英文摘要............................................3
壹、前言............................................5
貳、文獻檢討.........................................7
一、臺灣伴侶動物市場概況與法規..........................7
二、分子遺傳標幟.....................................11
三、族群遺傳之多態性..................................16
四、臺灣利用微衛星標幟所進行族群遺傳相關之研究.............29
五、微衛星標幟在犬隻之研究.............................30
參、材料與方法.......................................34
試驗一、臺灣犬隻新微衛星標幟之開發與應用..................34
一、新微衛星標幟之開發.................................34
二、新微衛星標幟之PCR增幅與各品種族群多態性檢測............42
三、遺傳分析.........................................44
試驗二、臺灣孟加拉豹貓微衛星標幟之應用....................49
一、試驗動物.........................................49
二、孟加拉豹貓之微衛星標幟選擇與基因型分析.................49
三、遺傳分析.........................................50
肆、結果............................................53
一、臺灣犬隻新微衛星標幟之開發與應用.....................53
二、臺灣孟加拉豹貓微衛星標幟之應用.......................73
伍、討論............................................81
一、臺灣犬隻新微衛星標幟之開發與應用.....................81
二、臺灣孟加拉豹貓微衛星標幟之應用.......................91
陸、結論............................................94
柒、參考文獻.........................................95
捌、附錄...........................................106
dc.language.isozh-TW
dc.title臺灣犬隻新微衛星標幟之開發與貓隻微衛星標幟之檢測zh_TW
dc.titleDevelopment of novel microsatellite markers for dogs and
testing of microsatellite markers for cats in Taiwan populations
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋永義(Yung-Yi Sung),蕭振文(Jen-Wen Shiau)
dc.subject.keyword貓隻,犬隻,微衛星標幟,族群遺傳分析,zh_TW
dc.subject.keywordCat,Dog,Microsatellite marker,Population genetic analysis,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
2.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved