Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56377
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁碧惠(Pi-Hui-Liang)
dc.contributor.authorHui-Yi Yangen
dc.contributor.author楊慧怡zh_TW
dc.date.accessioned2021-06-16T05:25:47Z-
dc.date.available2014-10-20
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation[ 1] Petersen, C. Analyse des phloridzins. Ann. Acad. Sci. Fr. 1835, 15, 178.
[ 2] LaVeen H, Laven R, LaVeen E. Treatment of Cancer with Phlorizin and its Derivatives. US Patent #4,840.939, US Patent Office, Crystal City, VA, (1989.)
[ 3] Ehrenkranz, J. R. L.; Lewis, N. G.; Ronald Kahn, C.; Roth, J. Phlorizin: a review.Diabetes Metab. Res. Rev. 2005, 21, 31-38.
[ 4] Oku, A.; Ueta, K.; Arakawa, K.; Ishihara, T.; Nawano, M.; Kuronuma, Y.; Matsumoto, M.; Saito, A.; Tsujihara, K.; Anai, M.; Asano, T.; Kanai, Y.; Endou, H. T-1095, an inhibitor of renal Na+- glucose cotransporters, may provide a novel approach to treating. Diabetes 1999, 48, 1794-1800.
[ 5] Kellett, G. L; Helliwell, P. A. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush border membrane. Biochem. 2000, 350, 155-162.
[ 6] Park, K.-H.; Na, K.; Akaike, T.; Lee, K. C. Probe of specific interaction between a simplified synthetic glycopolymer and erythrocytes as mediated by a glucose transporter (GLUT) on a cell memBrane. J. Biomed. Mater.Res. 2002, 59, 591.
[ 7] Kern, M.; Pahlke, G.; Balavenkatraman, K. K.; Bohmer, F. D.; Marko, D. Apple polyphenols affect protein kinase C activity and the onset of apoptosis in human colon carcinoma cells. J. Agr.. Food Chem. 2007, 55, 4999.
[ 8] Wu, C.-H.; Ho, Y.-S.; Tsai, C.-Y.; Wang, Y.-J.; Tseng, H.; Wei, P.-L.; Lee, C.-H.; Liu, R.-S.; Lin, S.-Y. In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int. J. Cancer 2009, 124, 2210-2219.
[ 9] Harada, N.; Inagaki, N. J. Role of sodium-glucose transporters in glucose uptake of the intestine and kidney. Diabetes Investig. 2012, 3, 352-353.
[ 10] Wood, I.S.; Trayhurn, P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr. 2003, 89, 3-9.
[ 11] Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324, 1029-1033.
[ 12] Brown, R. S.; Wahl, R. L. Overexpression of Glut-1 glucose transporter in human Breast cancer. Cancer 1993, 72, 2979-2985.
[ 13] Haber, R.S.; Rathan, A.; Weiser, K.R.; Pritsker, A.; Itzkowitz, S.H.; Bodian, C.; Slater, G.; Weiss, A.; Burstein, D.E. Glut1 glucose transporter expression in colorectal carcinoma. Cancer 1998, 83, 34-40.
[ 14] Kurata, T.; Oguri, T.; Isobe, T.; Ishioka, S.; Yamakido, M. Differential expression of facilitative glucose transporter (GLUT) genes in primary lung cancers and their liver metastases. Jpn. J. Cancer Res. 1999, 90, 1238-1243.
[ 15] Mellanen, P.; Minn, H.; Grenman, R.; Harkonen, P. Expression of glucose transporters in head and neck tumors. Int. J. Cancer 1994, 56, 622-629.
[ 16] Younes, M.; Lechago, L.V.; Somoano, J.R.; Mosharaf, M.; Lechago, J. Wide expression of the human erythrocyte glucose transporter Glut1 inhuman cancers. Cancer Res. 1996, 56, 1164-1167.
[ 17] Hanabata, Y.; Nakajima, Y.; Morita, K.; Kayamori, K.; Omura, K. Coexpression of SGLT1 and EGFR is associated with tumor differentiation in oral squamous cell carcinoma. Odontology 2012, 100, 156-163.
[ 18] Guo, G.; Cai, Y.; Zhang, B.; Xu, R.; Qiu, H.; Xia, L.; Jiang, W.; Hu, P.; Chen, X.; Zhou, F.; Wang, F. Overexpression of SGLT1 and EGFR in colorectal cancer showing a correlation with the prognosis. Med. Oncol. 2011, 28, 197-203.
[ 19] Casneuf, V. F.; Fonteyne, P.; Van Damme, N.; Demetter, P.; Pauwels, P.; de Hemptinne, B.; De Vos, M.; Van de Wiele, C.; Peeters, M. Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival. Cancer Invest. 2008, 26, 852-859.
[ 20] Lai, B.; Xiao, Y.; Pu, H.; Cao, Q.; Jing, H.; Liu, X. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch. Gynecol. Obstet. 2012, 285, 1455-1461.
[ 21] Ishikawa, N.; Oguri, T.; Isobe, T.; Fujitaka, K.; Kohno, N. SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn. J. Cancer Res. 2001, 92, 874-879.
[ 22] Priebe, A.; Tan, L.; Wahl, H.; Kueck, A.; He, G.; Kwok, R.; Opipari, A.; Liu, J.R. Glucose deprivation activates AMPK and induces cell death through modulation of Akt in ovarian cancer cells. Gynecol Oncol. 2011, 122, 389-395.
[ 23] Graham, N.A.; Tahmasian, M.; Kohli, B.; Komisopoulou, E.; Zhu, M.; Vivanco, I.; Teitell, M.A.; Wu, H.; Ribas, A.; Lo, R.S.; Mellinghoff, I.K.; Mischel, P.S.;Graeber, T.G. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol. Syst. Biol. 2012, 26, 589.
[ 24] Tew, K.D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994, 54, 4313–4320.
[ 25] Simons, A.L.; Ahmad, I.M.; Mattson, D.M.; Dornfeld, K.J.; Spitz, D.R.; 2-Deoxy-D-Glucose Combined with Cisplatin Enhances Cytotoxicity via Metabolic Oxidative Stress in Human Head and Neck Cancer Cells . Cancer Res. 2007, 67, 3364-3370.
[ 26] Cao, X.; Fang, L.; Gibbs, S.; Huang, Y.; Dai, Z.; Wen, P.; Zheng, X.; Sadee, W.; Sun, D. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother. Pharmacol. 2007, 59, 495-505.
[ 27] Xu, Y.; Villalona-Calero, M.A. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann. Oncol. 2002, 13, 1841-1851.
[ 28] Murakami, Y.; Kazuno, H.; Emura, T.; Tsujimoto, H.; Suzuki, N.; Fukushima, M. Different mechanisms of acquired resistance to fluorinated pyrimidines in human colorectal cancer cells. Int. J. Oncol. 2000, 17, 277-283.
[ 29] Seetharam, R.N.; Sood, A.; Basu-Mallick, A.; Augenlicht, L.H.; Mariadason, J.M.; Goel, S. Oxaliplatin resistance induced by ERCC1 up-regulation is abrogated by siRNA-mediated gene silencing in human colorectal cancer cells. Anticancer Res. 2010, 30, 2531-2538.
[ 30] Bardelli, A.; Siena, S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J. Clin. Oncol. 2010, 28, 1254-1261.
[ 31] Mesange, P.; Poindessous, V.; Sabbah, M.; Escargueil, A.E.; Gramont, A.D.; Larsen, A.K. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget 2014, 5, 4709-4721.
[ 32] Pan, X. Y.; Wang, C.; Wang, F.; Li, P. F.; Hu, Z. G.; Shan, Y. Y.; Zhang, J. Development of 5-Fluorouracil derivatives as anticancer agents. Curr. Med. Chem. 2011, 18, 4538-4556.
[ 33] Yin, P.; Hu, M. L.; Hu, L. C. Synthesis, structural characterization and anticarcinogenic activity of a new Gly–Gly dipeptide derivative: Methyl 2-(2-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetate. J. Mol. Struct. 2008, 882, 75-79.
[ 34] Xiong, J.; Zhu, H. F.; Zhao, Y. J.; Lan, Y. J.; Jiang, J. W.; Yang, J.J.; Zhang, S. F. Synthesis and antitumor activity of amino acid ester derivatives containing 5-Fluorouracil. Molecules. 2009, 14, 3142-3152.
[ 35] Daumar, P.; Decombat, C.; Chezal, J. M.; Debiton, E.; Madesclaire,M.; Coudert, P.; Galmier, M. J. Design, synthesis and in vitro drug release investigation of new potential 5-FU prodrugs. Eur. J. Med. Chem. 2011, 46, 2867-2879.
[ 36] Wang, X. Y.; Lin, J.; Zhang, X. M.; Liu, Q.; Xu, Q.; Tan, R. X.; Guo, Z. J. J. 5-Fluorouracil-cisplatin adducts with potential antitumor activity. Original Inorg. Biochem. 2003, 94, 186-192.
[ 37] Menger, F. M.; Rourk, M. J. Synthesis and reactivity of 5-Fluorouracil/cytarabine mutual prodrugs. J. Org. Chem. 1997, 62, 9083-9088.
[ 38] Liu, Y. Q.; Dai, W.; Yang, L.; Li, H. Y. Design and synthesis of novel camptothecin/5-Fluorouracil conjugates as cytotoxic agents. Nat. Prod. Res. 2011, 25, 1817-1826.
[ 39] Wang, Q.-W.; Liu, X.-Y.; Liu, L.; Feng, J.; Li, Y.-H.; Guo, Z.-J.; Mei, Q.-B. Synthesis and evaluation of the 5-Fluorouracil-pectin conjugate targeted at the colon. Med. Chem. Res. 2007, 16, 370-379.
[ 40] Zhang, Z. S.; Zhang, Q. B.; Wang, J.; Shi, X. L.; Zhang, J. J.; Song, H. F. Synthesis and drug release in vitro of porphyran carrying 5-Fluorouracil. Carbohydr. Polym. 2010, 79, 628-632.
[ 41] Liu, J.; Kolar, C.; Lawson, T. A.; Gmeiner, W. H. Targeted drug delivery to chemoresistant cells:  folic acid derivatization of FdUMP[10] enhances cytotoxicity toward 5-FU-resistant human colorectal tumor cells. J. Org. Chem. 2001, 66, 5655-5663.
[ 42] Venditto, V.J.; Simanek, E.E. Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol. Pharm. 2010, 7, 307-349.
[ 43] Li, W.Y.;, Koda, R.T. Stability of irinotecan hydrochloride in aqueous solutions. Am. J. Health Syst. Pharm. 2002, 59,:539-544.
[ 44] Burke, T.G.; Mi, Z. Ethyl substitution at the 7 position extends the half-life of 10-hydroxycamptothecin in the presence of human serum albumin. J. Med. Chem. 1993, 36, 2580–2582
[ 45] Zhao, H.; Lee, C.; Sai, P.; Choe, Y.H.; Boro, M.; Pendri, A.; Guan, S.; Greenwald, R.B. 20-O-acylcamptothecin derivatives: evidence for lactone stabilization. J. Org. Chem. 2000, 65, 4601–4606.
[ 46] Cao, Z.; Harris, N.; Kozielski, A.; Vardeman, D.; Stehlin, J.S.; Giovanella, B.Alkyl esters of camptothecin and 9-nitrocamptothecin: synthesis, in vitro pharmacokinetics, toxicity, and antitumor activity. J. Med. Chem. 1998, 41,:31-37.
[ 47] Lerchen, H.-G.; Baumgarten, J.; von dem Bruch, K.; Lehmann, T. E.; Sperzel, M.; Kempka, G.; Fiebig, H.-H. Design and optimization of 20-O-linked camptothecin glycoconjugates as anticancer agents. J. Med. Chem. 2001, 44, 4186–4195.
[ 48] Lee, M. H.; Kim, J. Y.; Han, J. H.; Bhuniya, S.; Sessler, J. L.; Kang, C.; Kim, J. S. Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug. J. Am. Chem. Soc. 2012, 134, 12668.
[ 49] Drummond, D. C.; Noble, C. O.; Guo, Z.; Hong, K.; Park, J. W.; Kirpotin, D. B. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res. 2006, 66, 3271–3277.
[ 50] Pal, A.; Khan, S.; Wang, Y.-F.; Kamath, N.; Sarkar, A. K.; Ahmad, A.; Sheikh, S.; Ali, S.; Carbnaro, D.; Zhang, A.; Ahmad, I. Preclinical safety, pharmacokinetics and antitumor efficacy profile of liposome-entrapped SN-38 formulation. Anticancer Res. 2005, 25, 331–342
[ 51] Watanabe, M.; Kawano, K.; Yokoyama, M.; Opanasopit, P.; Okano, T.; Maitani, Y. Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability. Int. J. Pharm. 2006, 308, 183–189
[ 52] Fox, M. E.; Guillaudeu, S.; Fre’chet, J. M. J.;Jerger, K.; Macaraeg, N.; Szoka, F. C. Synthesis and in ViVo antitumor efficacy of PEGylated poly(L-lysine) dendrimer-camptothecin conjugates. Mol. Pharmaceutics. 2009, 6, 1562–1572.
[ 53] Meyer-Losic, F.; Nicolazzi, C.; Quinnero, J.; Ribes, F.; Michel, M.; Dubois, V.; de Coupade, C.; Boukaissi, M.; Chene, A.-S.; Tranchant, I.; Arranz, V.; Zoubaa, I.; Fruchart, J.-S.; Ravel, D.; Kearsey, J. DTS-108, a novel peptidic prodrug of SN38: In ViVo efficacy and toxicokinetic studies. Clin. Cancer Res. 2008, 14, 2145–2153.
[ 54] Lu, J.-L.; Wang, J.-C.; Zhao, S.-X.; Liu, X.-Y.; Zhao, H.; Zhang, X.; Zhou, S.-F.; Zhang, Q. Self-microemulsifying drug delivery system(SMEDDS) improves anticancer effect of oral 9-nitro camptothecin on human cancer xenografts in nude mice. Eur. J. Pharm. Biopharm. 2008, 69, 899–907.
[ 55] Zhou, S.; Li, N.; Wang, X.; Li, C.; Tian, F.; Ren, S.; Zhang, Y.; He, Y.; Qiu, Z.; Zhao, D.; Chen, X. In vitro cytotoxicity, pharmacokinetics and tissue distribution in rats of MXN-004, a novel conjugate of polyethylene glycol and SN38. Xenobiotica 2014, 44, :562-569.
[ 56] Santi, D.V; Schneider, E.L; Ashley, G.W. Macromolecular prodrug that provides the irinotecan (CPT-11) active-metabolite SN-38 with ultralong half-life, low C(max), and low glucuronide formation. J. Med. Chem. 2014, 57, 2303-2014.
[ 57] Huang, B.; Desai, A.; Tang, S.; Thomas, T. P.; Baker, J. R. The synthesis of a c(RGDyK) targeted SN38 prodrug with an indolequinone structure for bioreductive drug release . Org. Lett. 2010, 12, 1384
[ 58] Gerweck, L.E.; Seetharaman, K. Cellular pH Gradient in Tumor versus Normal Tissue: Potential Exploitation for the Treatment of Cancer. Cancer Res. 1996, 15, 1194-1198.
[ 59] Chiche, J.; Brahimi-Horn, M.C.; Pouyssegur, J.Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J. Cell. Mol. Med. 2010, 14, 771-794.
[ 60] Ouyang, L.; He, D.; Zhang, J.; He, G.; Jiang, B.; Wang, Q.; Chen, Z.; Pan, J.; Li, Y.; Guo, L. Selective bone targeting 5-fluorouracil prodrugs: Synthesis and preliminary biological evaluation. Bioorg. Med. Chem. 2011, 19, 3750-3756.
[ 61] Masson, C.; Garinot, M.; Mignet, N.; Wetzer, B.; Mailhe, P.; Scherman, D.; Bessodes, M. pH-sensitive PEG lipids containing orthoester linkers: new potential tools for nonviral gene delivery. J. Control. Release 2004, 99, 423-434.
[ 62] Rachna, J.; Stephany M. S.; Jean, M. J. F. Synthesis and Degradation of pH-Sensitive Linear Poly(amidoamine)s. Macromolecules 2007, 40, 452–457.
[ 63] Young Heui, K.; Hyun Park, Jeong.; Minhyung, L.; Yong-Hee, K.; Gwan Park, Tae.; Sung Wan, K. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J. Control. Release 2005, 103, 209-219.
[ 64] Damen, E.W.; Nevalainen, T.J.; van den Bergh, T.J.; de Groot, F.M.; Scheeren, H.W. Synthesis of novel paclitaxel prodrugs designed for bioreductive activation in hypoxic turmor tissue. Bioorg. Med. Chem. 2002, 10, 71-77.
[ 65] de Groot, F.M.; van Berkom, L.W.; Scheeren, H.W. Synthesis and biological evaluation of 2‘-carbamate-linked and 2‘-carbonate-linked prodrugs of paclitaxel:  Selective activation by the tumor-associated protease plasmin. J. Med. Chem. 2000, 43, 3093-3102.
[ 66] Pan, X.; Lee, R. J. Tumour-selective drug delivery via folate receptor-targeted liposomes. Expert Opin. Drug Deliv. 2004, 1, 7–17.
[ 67] Mamot, C.; Drummond, D. C.; Hong, K.; Kirpotin, D. B.; Park, J. W. Liposome-based approaches to overcome anticancer drug resistance. Drug Resist. Updat. 2003, 6, 271–279.
[ 68] Sadava, D.; Coleman, A.; Kane, S. E. Liposomal daunorubicin overcomes drug resistance in human breast, ovarian and lung carcinoma cells. J. Liposome Res. 2002, 12, 301–309.
[ 69] Nori, A.; Kopecek, J. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug Deliv. Rev. 2005, 57, 609-636.
[ 70] Duncan, R.; Vicent, M. J.; Greco, F.; Nicholson, R. I. Polymer-drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocr.-Relat. Cancer 2005, 12 (Suppl. 1), S189-199.
[ 71] Nan, A.; Ghandehari, H.; Hebert, C.; Siavash, H.; Nikitakis, N.; Reynolds, M.; Sauk, J.J. Water-soluble polymers for targeted drug delivery to human squamous carcinoma of head and neck. J. Drug Target. 2005, 13, 189-197.
[ 72] Hamann, P.R.,; Hinman, L.M.; Beyer, C.F.; Greenberger, L.M.; Lin, C.; Lindh, D.; Menendez, A.T.; Wallace, R.; Durr, F.E.; Upeslacis, J. An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjug. Chem. 2005, 16, 346-353.
[ 73] Lee, E. S.; Na, K.; Bae, Y. H. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control. Release 2005, 103, 405-418.
[ 74] Aouali, N.; Morjani, H. ; Trussardi, A.; Soma, E.; Giroux, B.; Manfait, M. Enhanced cytotoxicity and nuclear accumulation of doxorubicin-loaded nanospheres in human breast cancer MCF7 cells expressing MRP1. Int. J. Oncol. 2003, 23, 1195-1201.
[ 75] Laurand, A.; Laroche-Clary, A.; Larrue, A.; Huet, S.; Soma, E.; Bonnet, J.; Robert, J. Quantification of the expression of multidrug resistance-related genes in human tumour cell lines grown with free doxorubicin or doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres. Anticancer Res. 2004, 24, 3781-3788.
[ 76] Rapoport, N. Combined cancer therapy by micellar-encapsulated drug and ultrasound. Int. J. Pharm. 2004, 277, 155-162.
[ 77] Cuenca, A. G.; Jiang, H.; Hochwald, S. N.; Delano, M.; Cance, W. G.; Grobmyer, S. R. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 2006, 107, 459-466.
[ 78] Vauthier, C.; Dubernet, C.; Chauvierre, C.; Brigger, I.; Couvreur, P. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control. Release 2003 93, 151-160.
[ 79] Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell Dev Biol. 1996, 12, 575-625.
[ 80] Abdalla, M. Y. Glutathione as potential target for cancer therapy; More or less is good? Jordan. J. Biol. Sci. 2011, 4 , 119-124.
[ 81] Heffernan, M.J.; Murthy, N. Polyketal nanoparticles:  a new pH-sensitive biodegradable drug delivery vehicle. Bioconjug. Chem. 2005, 16, 1340-1342.
[ 82] Tomlinson, R.; Heller, J.; Brocchini, S.; Duncan, R. Polyacetal-doxorubicin conjugates designed for pH-dependent degradation. Bioconjug. Chem. 2003, 14, 1096-1106.
[ 83] Patil, R.; Portilla-Arias, J.; Ding, H.; Konda, B.; Rekechenetskiy, A.; Inoue, S.; Black, K.L.; Holler, E.; Ljubimova, J.Y. Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano vehicle based on poly(β-L-malic acid). Int. J. Mol. Sci. 2012, 13, 11681-11693.
[ 84] Menger, F. M.; Rourk, M. J. Synthesis and reactivity of 5-Fluorouracil/cytarabine mutual prodrugs. J. Org. Chem. 1997, 62, 9083-9088.
[ 85] Saito, G.; Swanson, J. A.; Lee, K.-D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev. 2003, 55, 199-215.
[ 86] Wu, G.; Fang, Y.-Z.; Yang, S.; Lupton, J. R.; Turner, N. D. Glutathione metabolism and its implications for health. J. Nutrition. 2004, 134, 489-492.
[ 87] Baldwin, A. D.; Kiick, K. L. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug. Chem. 2011, 22, 1946-1953.
[ 88] Alley, S.C.; Benjamin, D.R.; Jeffrey, S.C.; Okeley, N.M.; Meyer, D.L.; Sanderson, R.J.; Senter, P.D. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem.2008, 19, 759-765.
[ 89] Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132, 171-183.
[ 90] Shen, B.-Q.; Xu, K.; Liu, L.; Raab, H.; Bhakta, S.; Kenrick, M.; Parsons-Reponte, K. L.; Tien, J.; Yu, S.-F.; Mai, E.; Li, D. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotech. 2012, 30, 184-189.
[ 91] Laquintana, V.; Denora, N.; Lopalco, A.; Lopedota, A.; Cutrignelli, A.; Lasorsa, F.M.; Agostino, G.; Franco, M. Translocator protein ligand–PLGA conjugated nanoparticles for 5-Fluorouracil delivery to glioma cancer cells. Mol. Pharm. 2014, 11, 859–871.
[ 92] Tian, X.; Baek, K.-H.; Shin, I. Dual-targeting delivery system for selective cancer cell death and imaging. Chem. Sci. 2013, 4, 947-956.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56377-
dc.description.abstract鈉依賴型葡萄糖轉運蛋白第一型(SGLT 1)和葡萄糖轉運蛋白第一型(GLUT1)在癌細胞中不正常地大量表現,以及癌細胞藉由大量攝取葡萄糖而對基因毒殺藥物產生抗藥性,顯見藉由葡萄糖轉運蛋白為標的的抗癌藥物設計為一個可行的方向。本論文根據以上因素,合成了以5-FU和irinotecan透過酸敏感與高還原力的生物可分解的linker設計,鍵結到SGLT1的抑制劑phlorizin和GLUT的抑制劑phloretin的複合分子,並進一步探討這兩種複合分子的活性。
在本論文中我們設計了兩種linker,單一釋放機轉是選擇利用酯鍵將抗癌藥物(5-FU和irinotecan)與標靶基團(phlorizin和phloretin)結合得到化合物30-33。另外,雙重釋放機轉乃是使用同時具有酯鍵和thiol-maleimide的linker,它將抗癌藥物(5-FU和irinotecan)與標靶基團(phlorizin和phloretin)結合得到化合物34-37,利用酸性或高還原條件下不穩定的特性,作為雙重釋放機轉
5-FU衍生物的化合物30在pH 6、7和8會進行水解,三天後水解程度分別為4.1%、47.7%和88.9% ,中性偏鹼性下水解程度會提升。在人類血漿中24小時釋放約為52%。 化合物31在高還原力的10 mM GSH下三天後仍無與GSH進行交換而釋放活性藥物。
5-FU衍生物30、31、34、35在HCT-116和HT29癌細胞中進行活性測試。發現IC50略低於5-FU。5-FU在HCT-116和HT29癌細胞中的IC50分別為9.6 μM和8.3 μM,化合物30、31、34、35在HCT-116和HT29癌細胞中的IC50分別落在6.0-7.5 μM和4.4-6.8 μM。
本論文針對葡萄糖轉運蛋白為標的的研究雖未能有效抑制癌細胞株生長,但以此方向為藥物設劑的方式可提供抗癌藥物設計的新方向。
zh_TW
dc.description.abstractSodium-dependent glucose cotransporter1 (SGLT1) and glucose transporter (GLUT) are abnormally expressed in cancer cells. Increase of glucose uptake in cancer cells causes the resistance of genotoxic agents. Combining above observations, glucose transporter as a target for designing anticancer agents is feasible. Based on this point, 5-FU and irinotecan, which were conjugated to SGLT1 inhibitor (phlorizin) or GLUT inhibitor (phloretin) by tailor-made biodegradable linker, were designed as novel anticancer agents and their cytotoxicities were performed.
In this thesis, two kind of linkers were designed. Anticancer agents (5-FU or irinotecan) and targering groups (phlorizin and phloretin) were conjugated with a acid-labile ester bond to give compounds 30-33 which was considered as the single release mechanism, and conjugated not only through a acid-labile ester bond but also through a bio-reductive thio-maleimide bond to give compounds 34-37 which were considered as the double release mechanism.
5-FU derivatives 30 would undergo hydrolysis under pH 6, 7 and 8 buffer and the percentage of release after 3 days incubation was 4.1%, 47.7%, 88.9%, respectively. Thy level of hydrolysis would increase as the pH increase. In rat plasma, the conjugate 30 was completely realeased within 5 min and in human plasma, the percentage of release was 52% within 24h. It showed more stable in human plasma than in rat plasma. Compound 31 was not exchanged with high concentration of GSH to release 5-FU even after 3 days incubation.
The cytotoxicities of 5-FU derivatives 30, 31, 34, 35 in HCT-116 and HT29 cancer cell were found slightly increase compared to 5-FU. IC50 of 5-FU in HCT-116 and HT29 cancer cells was 9.6 μM and 8.3 μM, respectively. IC50 of 30, 31, 34, 35 were ranged form 6.0-7.5 μM and 4.4-6.8 μM for HCT-116 and HT29, respectively.
Although using glucose transporter as a target for designing new anticancer agents did not prove to be efficient in current study, for the study focus on this topic might lead to open a new avenue for anticancer drug development.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:25:47Z (GMT). No. of bitstreams: 1
ntu-103-R01423020-1.pdf: 10110609 bytes, checksum: 4da1fab7af79b694f10948484a73ba6c (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
口試委員會審定書 I
致謝 II
目錄 III
中文摘要 V
Abstract VI
圖目錄 VIII
表目錄 IX
路徑目錄 X
縮寫表 XI
一、 研究背景 1
1.1 山杏葉含根皮甙Phlorizin 與根皮素phloretin之介紹 1
1.2 葡萄糖轉運蛋白在生物體中扮演的角色 2
1.3 葡萄糖轉運蛋白抑制劑合併抗癌藥物提升藥物敏感度 4
1.4 結直腸癌的藥物治療 5
1.4.1 5-Fluorouracil之化學修飾與其抗癌活性的研究 6
1.4.2 Irinotecan之化學修飾與其抗癌活性的研究 7
1.5 腫瘤微環境提供藥物選擇性釋放機轉 10
1.6 Linker 的選用 12
1.6.1 藉由酸促進藥物釋放 12
1.6.2 藉由高還原力促進藥物釋放 12
1.7 研究動機與目的 15
二、 結果與討論 17
2.1 化學合成方法 17
2.1.1 5-Fluorouracil 酯化衍生物之製備 17
2.1.2 Irinotecan 酯化衍生物之製備 18
2.1.3 Azide修飾之phlorizin 衍生物之合成 18
2.1.4 Disulfide bond 修飾之phlorizin衍生物之合成 20
2.1.5 抗癌藥物 (5-FU和Irinotecan) 和標靶moiety (phlorizin和phloretin) 藉由不同結合方式連結 22
2.2 生物活性 24
2.3 藥物安定性 26
2.3.1 化合物30之安定性測試 - 老鼠血漿 26
2.3.2 化合物30之安定性測試 - 人類血漿 27
2.3.3 化合物30之安定性測試 - pH依賴型 28
三、 結論 29
四、 實驗部分 30
4.1 實驗試劑及儀器來源 30
4.2 合成步驟與數據 33
4.3 HPLC分析 68
4.4 生物實驗 70
五、 參考文獻 71
六、 附圖 82
dc.language.isozh-TW
dc.subject複合分子zh_TW
dc.subject結直腸癌zh_TW
dc.subject鈉依賴型葡萄糖轉運蛋白抑制劑zh_TW
dc.subject葡萄糖轉運蛋白抑制劑zh_TW
dc.subject5-FUen
dc.subjectirinotecanen
dc.subjectphlorizinen
dc.subjectphloretinen
dc.subjectSGLT1en
dc.subjectGLUTen
dc.title共價鍵結基因毒性藥物與葡萄糖轉運蛋白抑制劑作為治療結直腸癌藥物的研究zh_TW
dc.titleStudy on the Covalent Conjugation of Genotoxic Agents and Inhibitors of Glucose Transporter for Anti-Colorectal Canceren
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳基旺(Ji-Wang Chern),忻凌偉(Ling-Wei Hsin),許麗卿(Lih-Ching Hsu),余佳慧(Chia-Hui Yu)
dc.subject.keyword結直腸癌,複合分子,葡萄糖轉運蛋白抑制劑,鈉依賴型葡萄糖轉運蛋白抑制劑,zh_TW
dc.subject.keyword5-FU,irinotecan,phlorizin,phloretin,SGLT1,GLUT,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
9.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved