請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56367
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃美嬌 | |
dc.contributor.author | Chien-Da Lin | en |
dc.contributor.author | 林建達 | zh_TW |
dc.date.accessioned | 2021-06-16T05:25:21Z | - |
dc.date.available | 2014-08-22 | |
dc.date.copyright | 2014-08-22 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-14 | |
dc.identifier.citation | [1] C.S. Peskin. Numerical Analysis of Blood Flow in the Heart. J. Comp. Phys. 25 (1977) 220-252.
[2] J. Mohd-Yusof. Combined immersed boundary/B-spline methods for simulations of flow in complex geometries. Annual Research Briefs, Center for Turbulence Research, Stanford University. 1999:317-327. [3] M.C. Lai, C.S. Peskin. An immersed-boundary method with formal second-order accurancy and reduced numerical viscosity. J. Comp. Phys. 160 (2000) 705-719. [4] R.D. Guy, D.A. Hartenstine. On the accuracy of direct forcing immersed boundary methods with projection methods. J. Comp. Phys. 229 (2010) 2479-2496. [5] J. Kim, D. Kim and H. Choi. An Immersed-boundary Finite Volume Method for Simulations of Flow in Complex Geometries. J. Comp. Phys. 171 (2001) 132-150. [6] D. Kim, H. Choi. Immersed boundary method for flow around an arbitrary moving body, J. Comp. Phys. 212 (2006) 662-680. [7] A.L.F. Lima E Silva, A. Silveira-Neto, J.J.R. Damasceno. Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. J. Comp. Phys. 189 (2003) 351-370. [8] C.C. Liao, Y.W. Chang, C.A. Lin, J.M. McDonough. Simulating flows with moving rigid boundary using immersed-boundary method. Computers & Fluids 39 (2010) 152-167. [9] J.I. Choi, R.C. Oberoi, J.R. Edwards, J.A. Rosati. An immersed boundary method for complex incompressible flows. J. Comp. Phys. 224 (2007) 757–784. [10] T.R. Lee, Y.S. Chang, J.B. Choi, D.W. Kim, W.K. Liu, Y.J. Kim. Immersed finite element method for rigid body motions in the incompressible Navier-Stokes flow. Comput. Methods Appl. Mech. Engrg. 197 (2008) 2305-2316. [11] L. Zhang, A. Gerstenberger, X. Wang, W. K. Liu. 2004. Immersed finite element method. Comput. Methods Appl. Mech. Engrg. 193 (2004) 2051-2067. [12] M. Gay, L. Zhang, and W.K. Liu. Stent modeling using immersed finite element method. Comput. Methods Appl. Mech. Engrg. 195 (2006) 4358-4370. [13] K. Taira, T. Colonius. The immersed boundary method : A projection approach. J. Comp. Phys. 225 (2007) 2118-2137. [14] R. Glowinski, T.W. Pan, J. Periaux. A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow. J. Comp. Phys. 169 (2001) 363-426. [15] L. Parussini. Fictitious Domain Approach Via Lagrange Multipliers with least squares Spectral Element method. J. Sci. Comput. 37 (2008) 316-335. [16] N. Sharma, N.A. Patankar. A fast computation technique for the direct numerical simulation of rigid particulate flows. J. Comp. Phys. 205 (2005) 439-457. [17] S.V. Apte, M. Martin, N.A. Patankar. A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows. J. Comp. Phys. 228 (2009) 2712-2738. [18] M. Coquerelle, G.-H. Cottet. A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comp. Phys. 227 (2008) 9121-9137. [19] M. Gazzola , P. Chatelain , W.M. van Rees , P. Koumoutsakos. Simulations of single and multiple swimmers with non-divergence free deforming geometries. J. Comp. Phys. 230 (2011) 7093-7114. [20] W. W. Ren, J. Wu, C. Shu and W. M. Yang. A stream function-vorticity formulation-based immersed boundary method and its applications. Int. J. Numer. Meth. Fluids. 70 (2012) 627-645. [21] L. Parussini, V. Pediroda. Fictitious Domain approach with hp-finite element approximation for incompressible fluid flow. J. Comp. Phys. 228 (2009) 3891-3910. [22] G.E. Karniadakis, S.J. Sherwin. 1999. Spectral/hp element methods for CFD , Numerical Mathematics and Scientific Computation. Oxford University Press. [23] W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods, Int. J. Numer. Methods Fluids 20 (1995) 1081-1106. [24] D. Kolomenskiy and K. Schneider. Numerical simulations of falling leaves using a pseudo-spectral method with volume penalization. Theor. Comput. Fluid Dyn. 24 (2010) 169-173. [25] D. Z Noor, M.J. Chern, T.L. Horng. An immersed boundary method to solve fluid–solid interaction problems. Computational Mechanics 44 (2009) 447-454. [26] Finn, D.L. Falling paper and flying business cards. SIAM News 40 (2007) pp.1-3 [27] Anthony Wachs. A DEM-DLM/FD method for direct numerical simulation of particulate flows : Sedimentation of polygonal isometric particles in a Newtonian fluid with collisions, Computers & Fluids 38 (2009) 1608-1628. [28] J Happel, H Brenner. Low Reynolds number hydrodynamics: with special applications to particulate media. (1983) [29] Gear, C. W. Numerical initial value problems in ordinary differential equations. Englewood Cliffs, N.J.,: Prentice-Hall. (1971) [30] Willmarth, W.W., Hawk, N.E., Harvey, R.L. : Steady and unsteady motions and wakes of freely disks. Phys. Fluids 7 (1964) 197-208. [31] Andersen, A., Pesavento, U., Wang, Z.J.: Unsteady aerodynamics of fluttering and tumbling plates. J. Fluid Mech. 541 (2005) 65-90. [32] Donea J., Huerta A., Ponthot J.-Ph., and Rodr’ıguez-Ferran A., Chapter 14: Arbitrary Lagrangian–Eulerian Methods, Encyclopedia of Computational Mechanics, edited by Erwin Stein, Ren’e de Borst and Thomas J.R. Hughes. Volume 1: Fundamentals. John Wiley & Sons,Ltd. ISBN: 0-470-84699-2 (2004). [33] G. Carbou, P. Fabrie. Boundary layer for a penalization method for viscous incompressible flow. Advances in Difference Equations 8 (2003) 1453–1480. [34] K.E. Karniadakis, M.Israeli and S.A.Orszag. High-Order Splitting Methods for the Incompressible Navier-Stokes Equations. Journal of Computational Physics 97 (1991) 414–443. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56367 | - |
dc.description.abstract | 流固雙向耦合是工業應用及大自然現象中常遇到的課題,複雜而難解。本研究旨在開發一個二維流場數值模擬工具,其可計算任意形狀之剛體在不可壓縮黏性流體中之運動行為。使用的空間離散方法是具幾何彈性且準確性階數易於調整之寬頻元素法(spectral element method),並搭配使用沉浸邊界法(immersed boundary method)以及懲罰模型(penalization model)來捕捉固體運動及滿足流固邊界條件。為因應剛體可為任意形狀之要求,除一套不隨時間更改的尤拉(Eulerian)全域網格供解全域方程式外,我們另備一套拉格朗(Lagrangian)網格固定於固體上,再結合本文所提出之「分胞法」(cut-cell method),可合理並在滿足動量守恆條件下進行內差,以取得流固邊界附近之物理量(速度、密度、壓力等),且有效率完成任何物理量在固體面積內之積分。
文中我們測試有圓柱、橢圓柱、方柱、三角柱以及棒狀物在重力作用下之自由漂移行為。在圓柱的模擬中我們發現在低雷諾數且固流密度比低時,擁有相當準確的結果;準確性隨雷諾數或固流密度比增高而降低,穩定性亦然。橢圓柱、方柱、三角柱於低固流密度比下模擬所得之運動行為與前人觀察到的現象皆相當吻合。棒狀物的模擬因為固流密度比高,則有不同的結果。總結初步模擬方法可行,未來研究仍須朝準確性及穩定性的改善進行。 | zh_TW |
dc.description.abstract | Complicated fluid structure interaction (FSI) problems commonly appear in industrial applications and in the nature. This work is aimed at developing a 2D numerical tool for simulating the two-way interactions between a rigid body of arbitrary shape and a viscous incompressible fluid flow. We apply the spectral element method for the spatial discretization because of its geometric flexibility and its high accuracy. In order to capture the arbitrary shape of the rigid body, a Lagrangian grid is generated and attached to the rigid body in addition to an Eulerian grid for the whole flow field. The no-slip boundary condition at the rigid body surface is enforced by the penalty method, in which a penalization term is added in the momentum equation inside the solid domain. Besides, we propose a so-called “cut-cell method” to calculate the FSI force. This method guarantees the momentum conservation and enhances the efficiency of the integration over the solid domain.
The freely-falling motion of a circular, elliptic, square, triangular, or rod type cylinder under gravity is simulated. In the circular cylinder case, the simulation results confirm the validity and the accuracy of the presently proposed simulator at low Reynolds numbers and low solid-to-fluid density ratios. The elliptic cylinder case shows the same phenomenon observed by others. The simulation results of the elliptic, square, and triangular cylinder cases at low density ratios are also in accordance with those in the literature. The simulation result of the rod-type cylinder case however does not agree with the result in the literature, mostly probably because it has a density ratio as high as 2. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:25:21Z (GMT). No. of bitstreams: 1 ntu-103-R01522109-1.pdf: 2576869 bytes, checksum: 83c62ef9dc7704c2ae977d796ba7bdd3 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 中文摘要 ................................................................................................. i
英文摘要 ................................................................................................ ii 第一章 緒論 .......................................................................................... 1 1-1 研究背景與動機 ........................................................................................ 1 1-2 論文架構 .................................................................................................... 4 第二章 流體模型及數值方法 .............................................................. 5 2-1 統御方程式 ................................................................................................ 5 2-2 模型方程式 ................................................................................................ 6 2-3 離散方法 .................................................................................................... 7 2-4 寬頻元素法與Helmholtz solver ................................................................ 9 2-4-1 座標系統與展開函數 ..................................................................... 9 2-4-2 Helmholtz solver ............................................................................... 11 2-5 分胞法 ...................................................................................................... 12 2-6 模擬流程 .................................................................................................. 16 第三章 數值模擬驗證 ........................................................................ 17 3-1 自由落體之圓柱 ...................................................................................... 17 3-2 自由下落之橢圓柱 .................................................................................. 26 3-3 自由下落之方柱 ...................................................................................... 34 3-4 自由下落之三角柱 .................................................................................. 48 3-5 自由下落之棒狀物 .................................................................................. 61 第四章 結論與未來展望 .................................................................... 66 參考文獻 .............................................................................................. 67 | |
dc.language.iso | zh-TW | |
dc.title | 二維剛體與流體雙向耦合運動模擬工具之研發 | zh_TW |
dc.title | A Simulator for 2D Rigid Body Motion in Viscous Incompressible Flow | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許文翰,洪子倫 | |
dc.subject.keyword | 流固耦合,寬頻元素法,沉浸邊界法,分胞法,自由落體, | zh_TW |
dc.subject.keyword | Fluid-Solid Interaction,Spectral element method,Immersed Boundary method,cut-cell method,free-falling objects, | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。